Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Agent-Based Modelling of Urban District Energy System Decarbonisation – A Systematic Literature Review

Version 1 : Received: 7 December 2021 / Approved: 8 December 2021 / Online: 8 December 2021 (12:06:02 CET)

A peer-reviewed article of this Preprint also exists.

Akhatova, A.; Kranzl, L.; Schipfer, F.; Heendeniya, C.B. Agent-Based Modelling of Urban District Energy System Decarbonisation—A Systematic Literature Review. Energies 2022, 15, 554. Akhatova, A.; Kranzl, L.; Schipfer, F.; Heendeniya, C.B. Agent-Based Modelling of Urban District Energy System Decarbonisation—A Systematic Literature Review. Energies 2022, 15, 554.

Journal reference: Energies 2022, 15, 554
DOI: 10.3390/en15020554

Abstract

There is an increased interest in the district-scale energy transition within interdisciplinary research community. Agent-based modelling presents a suitable approach to address variety of questions related to policies, technologies, processes, and the different stakeholder roles that can foster such transition. This state-of-the-art review focuses on the application of agent-based modelling for exploring policy interventions that facilitate the decarbonisation (i.e., energy transition) of districts and neighbourhoods while considering stakeholders’ social characteristics and interactions. We systematically select and analyse peer-reviewed literature and discuss the key modelling aspects, such as model purpose, agents and decision-making logic, spatial and temporal aspects, and empirical grounding. The analysis reveals that the most established agent-based models’ focus on innovation diffusion (e.g., adoption of solar panels) and dissemination of energy-saving behaviour among a group of buildings in urban areas. We see a considerable gap in exploring the decisions and interactions of agents other than residential households, such as commercial and even industrial energy consumers (and prosumers). Moreover, measures such as building retrofits and conversion to district energy systems involve many stakeholders and complex interactions between them that up to now have hardly been represented in the agent-based modelling environment.

Keywords

agent-based modelling; agent-based simulation; urban energy system; district energy system; systematic literature review; net-zero energy district; positive energy district

Subject

SOCIAL SCIENCES, Other

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.