Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Combining h-adaptivity with the Element Splitting Method for Crack Simulation in Large Structures

Version 1 : Received: 25 November 2021 / Approved: 30 November 2021 / Online: 30 November 2021 (11:43:56 CET)

A peer-reviewed article of this Preprint also exists.

Song, S.; Braun, M.; Wiegard, B.; Herrnring, H.; Ehlers, S. Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures. Materials 2022, 15, 240. Song, S.; Braun, M.; Wiegard, B.; Herrnring, H.; Ehlers, S. Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures. Materials 2022, 15, 240.

Journal reference: Materials 2021, 15, 240
DOI: 10.3390/ma15010240

Abstract

H-adaptivity is an effective tool to introduce local mesh refinement in FEM-based numerical simulation of crack propagation. The implementation of h-adaptivity could benefit the numerical simulation of fatigue or accidental load scenarios involving large structures such as ship hulls. In engineering applications, the element deletion method is frequently used to represent cracks. However, the element deletion method has some drawbacks such as strong mesh dependency and loss of mass or energy. In order to mitigate this problem, the element splitting method could be applied. In this study, a numerical method called ‘h-adaptive element splitting’ (h-AES) is introduced. The h-AES method is applied in FEM programs by combining h-adaptivity with the element splitting method. Two examples using the h-AES method to simulate cracks in large structures under linear-elastic fracture mechanics scenario are presented. The numerical results are verified against analytical solutions. Based on the examples, the h-AES method is proven to be able to introduce mesh refinement in large-scale numerical models that consist of structured coarse meshes. By employing the mesh refinement introduced in this paper, very small cracks are well represented in large structures.

Keywords

finite element method; mesh strategy; linear elastic fracture mechanics; mesh refinement; fracture mechanics; numerical crack; h-AES method; interelement method; edge separation; crack propagation

Subject

ENGINEERING, Mechanical Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.