Preprint
Article

This version is not peer-reviewed.

Flood Early Warning Systems using Machine Learning Techniques. Case the Tomebamba Catchment at the Southern Andes of Ecuador

A peer-reviewed article of this preprint also exists.

Submitted:

25 November 2021

Posted:

26 November 2021

You are already at the latest version

Abstract
Flood Early Warning Systems (FEWSs) using Machine Learning (ML) has gained worldwide popularity. However, determining the most efficient ML technique is still a bottleneck. We assessed FEWSs with three river states, No-alert, Pre-alert, and Alert for flooding, for lead times between 1 to 12 hours using the most common ML techniques, such as Multi-Layer Perceptron (MLP), Logistic Regression (LR), K-Nearest Neighbors (KNN), Naive Bayes (NB), and Random Forest (RF). The Tomebamba catchment in the tropical Andes of Ecuador was selected as case study. For all lead times, MLP models achieve the highest performance followed by LR, with f1-macro (log-loss) scores of 0.82 (0.09) and 0.46 (0.20) for the 1- and 12-hour cases, respectively. The ranking was highly variable for the remaining ML techniques. According to the g-mean, LR models correctly forecast and show more stability at all states, while the MLP models perform better in the Pre-alert and Alert states. Future efforts are recommended to enhance the input data representation and develop communication applications to boost the awareness of the society for floods.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated