Preprint
Article

This version is not peer-reviewed.

Evaluation NO2 Detection Using Low-Cost Folded Path Photometer

A peer-reviewed article of this preprint also exists.

Submitted:

18 November 2021

Posted:

19 November 2021

You are already at the latest version

Abstract
Nitrogen dioxide (NO2) contributes to several impacts both for human health and the environment. Periodical measurement of NO2 at industrial and residential areas needs comprehensive and reliable instrumentation; long-interference-free measures with minimum maintenance and re-calibration. DOAS can be used as a direct measurement technique based on specific absorption characteristics of NO2 follow Beer-Lambert law. This research applies a low-cost folded path photometer for measurement NO2 in air. Cheap tubular acrylic used as a detection cell with a 3D printed framework makes it compact, modular, and flexible. Evaluation of the DOAS conducted by instrument test responses using NO2 gas. The estimated LOD was ~ 1263 pb using 2 nm resolution of the spectrometer and 6-meter detection cell length. Deviation of the DOAS estimated to be 0.8% at high concentration and 2.85% at a low concentration based on DOAS calibration. An intercomparison between methods used to evaluate instrument performance to measure NO2 using emission from a motorcycle with coefficient correlation (R) 0.649 for paired DOAS-ASTM D1607 Griesz Saltzmann Method 0.846 for paired DOAS-Electrochemical Gas Analyzer. This significant correlation is caused by different respond time between paired methods, while it is still comparable for NO2 measurement.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated