Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Molecular Recognition by Pillar[5]arenes: Balance Between Hydrophobic and Electrostatic Interactions

Version 1 : Received: 16 November 2021 / Approved: 17 November 2021 / Online: 17 November 2021 (11:16:25 CET)

A peer-reviewed article of this Preprint also exists.

Gómez-González, B.; García-Río, L.; Basílio, N.; Mejuto, J.C.; Simal-Gandara, J. Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics 2022, 14, 60. Gómez-González, B.; García-Río, L.; Basílio, N.; Mejuto, J.C.; Simal-Gandara, J. Molecular Recognition by Pillar[5]arenes: Evidence for Simultaneous Electrostatic and Hydrophobic Interactions. Pharmaceutics 2022, 14, 60.

Abstract

The formation of inclusion complexes between alkylsulfonate guests and a cationic pillar[5]arene receptor in water was investigated by NMR and ITC techniques. The results show the formation of host-guest complexes stabilized by electrostatic interactions and hydrophobics effects with binding constants of up to 107 M-1 for the guest with higher hydrophobic character. Structurally, the alkyl chain of the guest is included in the hydrophobic aromatic cavity of the macrocycle while the sulfonate groups are hold in the multicationic portal by ionic interactions.

Keywords

Pillararene; host:guest; supramolecular; hydrophobic; ITC; NMR

Subject

Chemistry and Materials Science, Physical Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.