Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Driver Monitoring of Automated Vehicles by Classification of Driver Drowsiness using a Deep Convolutional Neural Network Trained by Scalograms of ECG Signals

Version 1 : Received: 10 November 2021 / Approved: 12 November 2021 / Online: 12 November 2021 (15:01:50 CET)

A peer-reviewed article of this Preprint also exists.

Arefnezhad, S.; Eichberger, A.; Frühwirth, M.; Kaufmann, C.; Moser, M.; Koglbauer, I.V. Driver Monitoring of Automated Vehicles by Classification of Driver Drowsiness Using a Deep Convolutional Neural Network Trained by Scalograms of ECG Signals. Energies 2022, 15, 480. Arefnezhad, S.; Eichberger, A.; Frühwirth, M.; Kaufmann, C.; Moser, M.; Koglbauer, I.V. Driver Monitoring of Automated Vehicles by Classification of Driver Drowsiness Using a Deep Convolutional Neural Network Trained by Scalograms of ECG Signals. Energies 2022, 15, 480.

Abstract

Driver drowsiness is one of the leading causes of traffic accidents. This paper proposes a new method for classifying driver drowsiness using deep convolution neural networks trained by wavelet scalogram images of electrocardiogram (ECG) signals. Three different classes were de-fined for drowsiness based on video observation of driving tests performed in a simulator for manual and automated modes. The Bayesian optimization method is employed to optimize the hyperparameters of the designed neural networks, such as the learning rate and the number of neurons in every layer. To assess the results of the deep network method, Heart Rate Variability (HRV) data is derived from the ECG signals, some features are extracted from this data, and finally, random forest and k-nearest neighbors (KNN) classifiers are used as two traditional methods to classify the drowsiness levels. Results show that the trained deep network achieves balanced accuracies of about 77% and 79% in the manual and automated modes, respectively. However, the best obtained balanced accuracies using traditional methods are about 62% and 64%. We conclude that designed deep networks working with wavelet scalogram images of ECG signals significantly outperform KNN and random forest classifiers which are trained on HRV-based features.

Keywords

Convolutional neural network; Driver drowsiness; ECG signal; Heart rate variability; Wavelet scalogram

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.