Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Towards the de Novo Design of HIV-1 Protease Inhibitors Based on Natural Products

Version 1 : Received: 5 November 2021 / Approved: 8 November 2021 / Online: 8 November 2021 (09:23:49 CET)

A peer-reviewed article of this Preprint also exists.

Chávez-Hernández, A.L.; Juárez-Mercado, K.E.; Saldívar-González, F.I.; Medina-Franco, J.L. Towards the De Novo Design of HIV-1 Protease Inhibitors Based on Natural Products. Biomolecules 2021, 11, 1805. Chávez-Hernández, A.L.; Juárez-Mercado, K.E.; Saldívar-González, F.I.; Medina-Franco, J.L. Towards the De Novo Design of HIV-1 Protease Inhibitors Based on Natural Products. Biomolecules 2021, 11, 1805.

Abstract

The acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) continues to be a public health problem. In 2020, 680,000 people died from HIV-related causes, and 1.5 million people were infected. Antiretrovirals are only a way to control HIV infection but not to cure AIDS. As such, effective treatment must be developed to control AIDS. Developing a drug is not an easy task, and there is an enormous amount of work and economic resources invested. For this reason, it is highly convenient to employ computer-aided drug design methods, which can help generate and identify novel molecules. Using the de novo design, new novel molecules can be developed using fragments as building blocks. In this work, we develop a virtual-focused compound library of HIV-1 viral protease inhibitors from natural product fragments. Natural products are characterized by a large diversity of functional groups, many sp3 atoms, and chiral centers. Pseudo-natural products are a combination of natural products fragments that keep the desired structural characteristics from different natural products. An interactive version of chemical space visualization of virtual compounds focused on HIV-1 viral protease inhibitors from natural product fragments is freely available at https://figshare.com/s/ceb58d58e8f5585ce67e.

Keywords

artificial intelligence; de novo design; fragment-based drug discovery; HIV-1 inhibitors; pseudo natural products

Subject

Chemistry and Materials Science, Medicinal Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.