Preprint
Article

This version is not peer-reviewed.

Regularization, Bayesian Inference and Machine Learning methods for Inverse Problems†

A peer-reviewed article of this preprint also exists.

Submitted:

01 November 2021

Posted:

03 November 2021

You are already at the latest version

Abstract
Classical methods for inverse problems are mainly based on regularization theory. In particular those which are based on optimization of a criterion with two parts: a data-model matching and a regularization term. Different choices for these two terms and great number of optimization algorithms have been proposed. When these two terms are distance or divergence measures, they can have a Bayesian Maximum A Posteriori (MAP) interpretation where these two terms correspond, respectively, to the likelihood and prior probability models.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated