Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin–Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy–causing Double Mutation MYBPC3Δ25bp/D389V

Version 1 : Received: 11 October 2021 / Approved: 12 October 2021 / Online: 12 October 2021 (12:20:26 CEST)

A peer-reviewed article of this Preprint also exists.

Schwäbe, F.V.; Peter, E.K.; Taft, M.H.; Manstein, D.J. Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin-Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy-Causing Double Mutation MYBPC3Δ25bp/D389V. Int. J. Mol. Sci. 2021, 22, 11949. Schwäbe, F.V.; Peter, E.K.; Taft, M.H.; Manstein, D.J. Assessment of the Contribution of a Thermodynamic and Mechanical Destabilization of Myosin-Binding Protein C Domain C2 to the Pathomechanism of Hypertrophic Cardiomyopathy-Causing Double Mutation MYBPC3Δ25bp/D389V. Int. J. Mol. Sci. 2021, 22, 11949.

Abstract

Cardiac myosin-binding protein C (MyBPC) is a thick-filament associated regulatory protein in the sarcomere. It regulates the sensitive contractile system of the myocardium by acting as a mechanical tether, sensitizing the thin filament or modulating myosin motor activity. Mutations in the MYBPC3 gene are a frequent cause for the development of hypertrophic cardiomyopathy, the most frequent cardiac disorder. Recently, the monoallelic double mutation MYBPC3Δ25bp/D389V has been discovered as a subset of the common MYBPC3Δ25bp variant in South Asia. MYBPC3Δ25bp/D389V carriers exhibit hyperdynamic features, which are considered an early finding for the development of hypertrophic cardiomyopathy. Using correlation-guided molecular dynamics simulations sampling, we show that the D389V mutation shifts the conformational distribution of the C2 domain of MyBPC. We further applied biochemical approaches to probe the effects of the D389V mutation on structure, thermostability and protein-protein interactions of MyBPC C2. The melting temperature (Tm) of MyBPC C2 D389V is decreased by 4 to 7 °C compared to wild type while the interaction of the C0-C2 domains with myosin and actin remains unchanged. Additionally, we utilized steered molecular dynamics (SMD) simulations to investigate the altered unfolding pathway of MyBPC C2 D389V. Based on our data, we propose a pathomechanism for the development of HCM in MYBPC3Δ25bp and MYBPC3Δ25bp/D389V carriers.

Keywords

cardiac muscle; cardiac contractility; force generation; enhanced molecular dynamics simulations; allostery; protein folding; disease; hypertrophic cardiomyopathy

Subject

Biology and Life Sciences, Biochemistry and Molecular Biology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.