Since its inception in the late 2000s, blockchain has emerged as a powerful tool for creating trust without intermediaries to incentivize global communities for working for a common goal, such as the improvement of its very ecosystem, its applications and community adoption. While first blockchains were mainly devised for confirming transactions of their innate cryptocurrencies like Bitcoin, smart-contract blockchains like Ethereum can interface with the real-world through so-called “oracles”, which feed trustful off-chain information. This paper introduces digital twins of physical objects and processes as computational oracles to effectively unleash the tremendous opportunity offered by blockchain to the realm of fundamental science, research and technology development (RTD). The crowdsourcing concept is illustrated with the example of centrifugal flow control in microfluidic “Lab-on-a-Disc” (LoaD) systems.