Preprint
Article

Minimum Message Length in Hybrid ARMA and LSTM Model Forecasting

This version is not peer-reviewed.

Submitted:

30 September 2021

Posted:

04 October 2021

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
We investigate the power of time series analysis based on a variety of information-theoretic approaches from statistics (AIC, BIC) and machine learning (Minimum Message Length) - and we then compare their efficacy with traditional time series model and with hybrids involving deep learning. More specifically, we develop AIC, BIC and Minimum Message Length (MML) ARMA (autoregressive moving average) time series models - with this Bayesian information-theoretic MML ARMA modelling already being new work. We then study deep learning based algorithms in time series forecasting, using Long Short Term Memory (LSTM), and we then combine this with the ARMA modelling to produce a hybrid ARMA-LSTM prediction. Part of the purpose of the use of LSTM is to seek capture any hidden information in the residuals left from the traditional ARMA model. We show that MML not only outperforms earlier statistical approaches to ARMA modelling, but we further show that the hybrid MML ARMA-LSTM models outperform both ARMA models and LSTM models.
Keywords: 
long short-term memory; minimum message length; time series; neural network; deep learning; Bayesian statistics; probabilistic modeling
Subject: 
Computer Science and Mathematics  -   Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

397

Views

283

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated