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Abstract: We investigate the power of time series analysis based on a variety of information-theoretic
approaches from statistics (AIC, BIC) and machine learning (Minimum Message Length) - and we
then compare their efficacy with traditional time series model and with hybrids involving deep
learning. More specifically, we develop AIC, BIC and Minimum Message Length (MML) ARMA
(autoregressive moving average) time series models - with this Bayesian information-theoretic MML
ARMA modelling already being new work. We then study deep learning based algorithms in time
series forecasting, using Long Short Term Memory (LSTM), and we then combine this with the
ARMA modelling to produce a hybrid ARMA-LSTM prediction. Part of the purpose of the use of
LSTM is to seek capture any hidden information in the residuals left from the traditional ARMA
model. We show that MML not only outperforms earlier statistical approaches to ARMA modelling,
but we further show that the hybrid MML ARMA-LSTM models outperform both ARMA models
and LSTM models.

Keywords: long short-term memory, minimum message length, time series, neural network, deep
learning, Bayesian statistics, probabilistic modeling

1. Introduction

Forecasting in time series is difficult in practice due to the presence of trends and/or
seasonal components. For example, economic time series data are highly impacted by
seasonal factors and often show long run cycles. Such trends and seasonality are difficult
to capture by the traditional ARIMA (autoregressive integrated moving average) model [1].
The ARIMA model generally use for the stationary time series or differencing with integer
order in order to have the stationery. Using more than 1 integer of differencing order
may distort the seasonal or trend factor [2]. This is the motivation for the more general
ARFIMA and Seasonal ARIMA (SARIMA) models, respectively built to include fractional
differencing and an explicit seasonal factor. But the deep learning LSTM (long short-term
memory) technique might be more suitable to capture the information that is less obvious
in the time series, as it allows for a much more general model class. The time series science
community takes much effort to discover the appropriate model in order to identify time
dependency in time series data [3]. Historically, the ARMA model was introduced by Box
and Jenkins in 1976, and is popular and widely use in the time series science community
and provides accurate forecasts in both in-sample and out-sample data when it correctly
selects the relevant parameters [4]. It is a hybrid of the autoregressive (AR) and moving
average (MA) processes but the ARMA model can only be used in the stationary time
series - so the ARIMA (autoregressive integrated moving average) model was introduced
to allow the integer differencing, aiming to make the time series data stationary from the
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publication Time Series Analysis: Forecasting and Control by Box and Jenkins (1970)!
[5]. In parallel, machine learning has seen the development of neural network models in
computer science, ultimately influencing statistics. Similar to the families of the ARMA
model, the deep learning also including serval of several variants such as DNN, CNN, and
RNN. This report is investigating the particular form of RNN which is called Long Short
Term Memory (LSTM), which are typically used for time series [6]. In recent years, LSTM
has been shown to work well in the forecast for serial data with complex time dependency,
with the LSTM-based model being widely used in analyzing (e.g.) stock market and energy
consumption prediction [7]. On the other hand, the Bayesian Minimum Message Length
(MML) principle [8] and the Akaike Information Criterion (AIC), Bayesian information
criterion (BIC) are based in information theory [9,11,19].

We use the information-theoretic Minimum Message Length (MML), AIC and BIC to
select the model orders of ARMA(p, ), and we then train the LSTM model by the residuals
left from the ARMA model [12,13]. Most other papers using this kind of hybrid model
use information-theoretic model selection techniques such as AIC and BIC. However, our
results show that MML compares favorably with these approaches when doing ARMA
alone - and this is a new contribution of our paper. We also compare the ARMA-LSTM
selected by MML with the ARMA model alone, and our results also show that MML
performs well in this kind of time series model. Our results further show that the Bayesian
information-theoretic MML principle provides more reliable and high accurate results in
the model selection of hybrid model ARMA-LSTM.

Section 2 introduces the Box and Jenkins theory for the ARIMA model and discusses
its limitations. Section 3 introduces the information-theoretic Minimum Message Length
criterion in model selection, and Section 4 introduces the deep learning model LSTM.
Section 5 provides the algorithm of the hybrid ARMA-LSTM model, and Section 6 provides
the experimental results with comparison.

2. ARIMA Modelling

This section reviews the theory of Autoregressive Integrated Moving Average Model
(ARIMA) modelling due to Box and Jenkins (1970) [5,14,18].

Let {Y;} be a homogeneous nonstationary time series and suppose that the d', d =
1,2... differencing of the series is stationary and is given by X; = (1 — B)?Y;, where B is the
backshift operator. Then a stationary ARMA(p,q) model can be fitted for { X;} satisfying

P q
Xp=c+ ) ¢iXi_i+er+) ey, 1)
i=1 i=1

where {e;} ~ WN(0,0?).

Let¢(B) =1—¢1B—... —¢pBF; 8(B) =1+ 6B+ ...+ 6,B7, are two polynomials
of degree p and g respectively such that the zeros of ¢(B) and 6(B) are outside the unit
circle. Then the ARMA(p,q) in (1) can be written in a compact form as

¢(B) Xt = c+ 6(B)ey. ()
Now the corresponding ARIMA(p,d,q) model for the original series {Y;} is given by
¢(B)(1—B)?Y; = c+ 6(B)e;. @)

It is known that ARIMA is a form of a linear regression model with the lag order of time
series data and corresponding residuals. In an environment where the ARIMA model
fits well for the given data, then the corresponding residuals through the model should
form a random scatter plot with a constant mean and variance over the time, see, for
example, [18]. If the ARIMA model is not well fitted for the data or an incorrect model has

1 The book by Box, Jenkins, and Reinsel (1994) is an updated version of Box Jenkins (1970) by adding the outlier detection and unit roots test
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been fitted, then the residuals will not show a random scatter plot and instead indicate
autocorrelations within the residuals. This concludes that the information hidden in the
data has not been completely captured by the fitted ARIMA model and consider refitting
an alternative ARIMA model [26].

The above family of ARIMA models are also capable of modelling a wide range of
seasonal data with slight modifications. A seasonal extension of the model (3) can be
written for a set of time series data with seasonality m. Incorporating both the seasonal and
nonseasonal components with additional polynomials, the new model is

¢(B)®(B™)(1 - B)¥ (1 — B")PY; = c 4 6(B)O(B™ ey, (4)

®(B") = 1—P1B" —...— ®pB"’, O(B") = 1+ ©;B" +...+OpB"? and D is the
degree of seasonal differencing. For simplicity, this is written as

Y, ~ SARIMA(p,d,q)(P,D,Q)m ®)

The corresponding model in (4) is known as the Seasonal ARIMA or SARIMA model.

To estimate the parameters of the SARIMA model in (4), it is important to identify
changes of variance in the autocorrelation plot (ACF) of data. This ACF provides an
indication of linear dependencies between the observation of time series value, which is
related to the order of the model. In addition, the corresponding partial autocorrelation
function (PACF) can be used to confirm the approximate order required in the model.

In this study we use only non-seasonal ARIMA modelling. As the non-seasonal degree
of differencing d can be predetermined in practice, we simulate the stationary time series
data.

Assuming the data is generated from a mean zero stationary ARMA(p, q) process with
Gaussian errors, we use the facxt that the distribution of data is multivariate Gaussian
distribution with mean y = 0.

Suppose that we have N observations y = (1, ..., yn) generated through the model
in (2) with ¢ = 0 and let fi is the vector of all the parameters. Then the corresponding
unconditional log-likelihood function, L(y|B) can be given as:

N 1 1 B
LyIp) =~ log(2710%) — 5 log[®| = 555y "2 1y, ©)

where |Z| is the determinant of ¥ and ¢?Z is an 1 x n theoretical autocovariance matrix of

y.

3. Minimum Message Length

The Bayesian information-theoretic Minimum Message Length (MML) principle [8,9,
13,15] is based on coding theory, and can be thought of in several equivalent ways. It can
be thought of in terms of a transmitter encoding a two-part message and transmitting it to
a receiver, where the first part of the message contains information encoding the model
and the second part of the message encodes the data given the model. The length of the
first part of the message can be thought of as the complexity of the model, and the length
of the second part of the message (effectively, the statistical negative log-likelihood) is
a measure of goodness of fit to the observed data. For example, with X = {4, B,C,D},
possible encodings would be (e.g.) A = 00,B = 01,C = 10,D = 11 or instead (e.g.)
A=1,B=01,C=001,D = 0001, with the length of code represented as I() - e.g., with
A =00, I(A) = 2. The code length is typically (close to) the negative logarithm of the
probability.

MML thus gives a quantitative information-theoretic trade-off between model com-
plexity (length of first part of message) and goodness of fit (length of second part of
message) [20]. A smaller MML value (or, equivalently, a shorter message length) indicates
the model is less complex and highly fitted to the data [19]. In practice, minimizing the
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message length can be expressed as:

argmin {I(0) +I(y"]0)}, (7)
0cO®

where () encodes the assertion (or model) and I(y"|0) encodes the detail (or data given
the model). In MML, there is prior knowledge of 7t over the parameter space so the
MML is part of the Bayesian approach. Following Wallace and Freeman [15], MMLS87 is
extended version of MML, it has been shown to work well in time series model such as
autoregressive model (AR) and moving average model (MA) [12,16]. Assuming the ARMA
model parameters are given by = (¢, ..., ¢p,01, ..., g, a2, following MML87, we seek the
parameter values in order to minimize the message length is:

MessLen(B,y) = — log(h(ﬁ)f(yﬁgkg)/"lﬁ)en ) + g(l + log ) — logh(k), (8)

where € is measuring the accuracy of data, h(k) is the prior on the number of parameters,
h(B) is the Bayesian prior distribution over the parameter set, f(y1, ..., y»|B) is standard sta-
tistical likelihood function, F(p) is the expected Fisher Information matrix of the parameter
set B, xj is the lattice constant (which accounts for the expected error in the log-likelihood
function from ARMA model equation 6 due to quantization of the n-dimensional space,
it is bounded above by % and bounded below by ﬁ For example, 1 = ﬁ, Ky = ﬁ,

— 19 1
K3 = 192421737 and Kn — e whenn — 00)

The MMLS87 message length for ARMA model parameter 5 can also be represented as:

I(y,B) =~ log () + 5 log |F(B)] + 5 log e + & ~log f(y1) ©)

The MMLS8?7 is model invariant and avoid explicitly constructing the quantized param-
eter space [11]. MMLS87 is used for model selection and parameter estimation by choosing
the model with minimize the message length.

4. Long short-term memory (LSTM)

With the development of computational power in electronic equipment, powerful
computers provide many learning algorithms and approaches in time series forecasting
[21-23]. The deep learning is one of the popular approaches in recent years, it provides
a complex model that is able to capture the information from the predictors than the
traditional model. Long Short-Term Memory is special kind of Recurrent Neural Network
introduced by Hochreiter and Schmidhuber in 1997 [17] . LSTM manages the two state
vectors, the short term state 1; and long term state c; and using the gating mechanism, by
adding linear component from the previous layer in order to provide the long memory.
LSTM has been widely use in the time series forecasting, because it able to capture more
information in the time series data, particularly for the financial econometrics area where
the price of financial assets are depends on varies of different factors that are difficult to
represented by linear model [23,24]. Each LSTM layer including the cells of forgot gate,
input gate, and output gate shown in the Figure 1 2.

e Forget gate: f; = o(Ufx; + W/h;_q + bf)

e Inputgate: i = o(Ux; + Wihy_q1 +b)

e  Output gate: o = o(Ux; + W°hy_1 + b°)

The forget gate is using a sigmoid function ¢ (x) from equation 11 which having the value
between 0 and 1, it determine how much information should be forgot. If the result from

2 Source: Dinh Phung, Department of Artificial Intelligence and Data Science, Monash University, Clayton, Victoria 3168, Australia


https://doi.org/10.20944/preprints202110.0049.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 October 2021 d0i:10.20944/preprints202110.0049.v1

50f17

Y
r
V,c
/ Forget gate \
Ci—1 (e D ce
Input gate Output gate
fe 9t \ ir
sigmoid tanh sigmoid sigmoid
A A T 'y y < —
‘ h
he_q wr W Wil e t
- u’,bf __Ub [ U b 4
Xt

Figure 1. LSTM Structure

sigmoid function close to 0, it means the more information should be forgot, versa vice.

1
70 = e

The input gate also uses the sigmoid function, the input gate control the value input
from the input function of g; = tanh(Wh;_q1 + Ux; + b) with using tanh(x) function:

(10)

eX —e*

t(u’lh(x) = m

The input gate control how much information should be remember. LSTM long-term state
is element wise operation with ¢; = f; ® ¢;_1 + g+ © i;. Output gate o; is control how much

(11)

Yt Per1 yr

Ce+1 ‘r

e

Xt Xty1

Figure 2. LSTM Overlapping

long term information c; should be carried forward to the next layer and it also contribute to
the short term state of ;. The result from output gate function is also between 0 and 1, and
LSTM short term state also element wise operation with iy = oy ® tanh(c;). Overlapping
more than one layer of LSTM shown in the Figure 2 3, and makes LSTM provide time
series model to capture long and short term information in order to forecast. As usual,
the LSTM same with other neural network which trained by the back propagation. LSTM
requires N >= 1 time steps sequence data to train the model, its timing information will
be modeled and characterized to deep representation.

5. Hybrid ARIMA-LSTM model

In recent year, LSTM and its variation along with some hybrid models dominate the
financial time series forecasting domain [23]. The LSTM is able to capture the dependency
of residuals across the time, and the LSTM is trained by the time step [25]. In this paper,
we are using Moving Average lag order g from ARMA parameters selected MMLS87, AIC,
and BIC, if g = 0 then only use ARMA to forecast the time series data without LSTM. Our

3 Source: Dinh Phung, Department of Artificial Intelligence and Data Science, Monash University, Clayton, Victoria 3168, Australia
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LSTM model is composed of a single input layer with input share of MA order and the
sequence learning features. The following LSTM layer also contains the sequence learning
features, and the third LSTM layer with the same unit following by the fourth dense layer
with one unit.

Algorithm 1 Algorithm with LSTM Model

Require: number of epoches = 10
while MA(q) order in order set selected by MML, AIC do
model.add(LSTM(30, return_sequences=True, input_shape=(g, 1)))
model.add(LSTM(30, return_sequences=True))
model.add(LSTM(30))
model.add(Dense(1))
end while

The hybrid model ARMA-LSTM is training the LSTM model by the residuals from
the ARMA model. In this paper, MMLS87, AIC, and BIC have been used to select the model
parameter orders from the ARMA, so this paper does not only compare the errors by hybrid
model and single ARMA model but also compare the hybrid model by the selection of
MMLS87, AIC, and BIC. The forecast from the ARMA model is the fitted mean 1, and
also because the information hidden in residual from ARMA model, so the forecast of
hybrid model will be

Yt+1 = pi1 + B (12)

where y; 11 represent the linearity modeling of data from ARMA model selected according
to the information-theoretic MMLS87 and AIC. The ¢; is the residual left by the ARMA
model Y; — Y;, and Eip1=fler) = fF(Ye — Yt), which is forecasted by the LSTM based on
the pass residuals value €¢,€; 1, ..., €;—q, where the parameter g selected by the MML87,
AIC, and BIC. The hybrid ARMA-LSTM model combine both linear and non-linear tenden-
cies in time series data [30].

The algorithm of the hybrid model is shown below:

Algorithm 2 Algorithm with Hybrid Model ARMA-LSTM

Require: number of datan > 0
while N < number of different simulations do
while n < number of dataset in simulation do
while i € MA orders selected from MML, AIC do
if i # 0 then
Train LSTM model by the residuals of ARMA model
Rolling forecast the residual by LSTM
Calculate root mean squared error by Y1
else if i = 0 then
Calculate root mean squared error by forecast from ARMA only
end if
end while
end while
end while

6. Experiments

The purpose of this experiment part is designed to compare the results of the ARMA
model itself with the hybrid ARMA-LSTM model and also compare with the hybrid model
that the parameters selected by the MMLS87, AIC, and BIC. In order to analyze the accuracy
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7=

of forecasting, we are using the Root Mean Squared Error, RMSE = % (vt — 7:)? to

t
compare the different results, where T stands for the forecast window size.

6.1. Simulated Dataset

In this section, we use uniform distribution from minimum —0.9 to maximum 0.9
to randomize the parameters ARMA(p, ) for the data simulation. There are 10 different
parameter sets from py, ..., p5 and 41, ..., q2. The values in the table are the average of RMSE
in particular parameters simulated dataset. The dataset including N = 50, 100, 200, 300, 500
time series data point in one data set and also include forecast windows T = 3, 10, 30 and
50. Each value in Table 1 is the average of RMSE of forecast errors over the datasets. The
bold texts indicate the smallest forecast errors from the different kinds of models. Table 1 to
Table 3 provides the comparison for different sizes of forecast window with T = 3, 10, and 30.

Average of RMSE & Standard deviation
ARMA ARMA-LSTM
AIC BIC MMLS7 AIC BIC MMLS7
P1, 01 0.982 1.108 1.033 1.204 1.217 1.234
(0.646) (0.529) (0.469) (0.308) (0.502) (0.7)
P1,92 1.133 1.053 1.166 1.301 1.289 1.384
(0.592) (0.669) (0.635) (0.922) (0.95) (0.838)
P2, q1 1.027 1.024 1.023 1.025 1.012 1.005
(0.423) (0.421) (0.418) (0.408) (0.376) (0.48)
P2, 92 1.333 1.278 1.271 1.241 1.182 1.194
(0.793) (0.841) (0.848) (0.745) (0.711) (0.674)
P3,q1 0.955 0.956 0.944 0.965 0.975 0.986
(0.377) (0.377) (0.37) (0.341) (0.35) (0.426)
P3, 92 1.293 1.241 1.238 1.114 1.211 1.105
(0.331) (0.296) (0.296) (0.284) (0.266) (0.259)
P4, 01 0.901 0.916 0.871 0.948 0.944 0.932
(0.483) (0.448) (0.398) (0.397) (0.41) (0.442)
P4, q2 1.207 1.226 1.206 1.252 1.261 1.251
(0.539) (0.515) (0.513) (0.777) (0.778) (0.772)
P5, 41 1.006 0.907 0.903 1.122 1.117 1.018
(0.54) (0.626) (0.578) (0.538) (0.553) (0.467)
P5, 42 1.026 1.052 1.061 1.042 1.021 1.046
(0.583) (0.553) (0.559) (0.559) (0.592) (0.53)

Table 1: Dataset for N=100& T =3
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Average of RMSE & Standard deviation
ARMA ARMA-LSTM
AIC BIC MMLS7 AIC BIC MMLS87
1,91 1.234 1.208 1.221 1.201 1.132 1.138
(0.178) (0.165) (0.293) (0.404) (0.184) (0.317)
P1,92 1.571 1.553 1.398 1.555 1.549 1.494
(0.375) (0.386) (0.304) (1.109) (1.125) (0.834)
P2, 91 1.025 1.041 1.043 1.013 1.02 1.037
(0.194) (0.203) (0.193) (0.174) (0.182) (0.265)
P2, 92 1.353 1.327 1.325 1.274 1.257 1.255
(0.438) (0.373) (0.368) (0.213) (0.206) (0.205)
P3, 01 0.947 0.895 0.901 1.018 0.946 0.989
(0.194) (0.129) (0.134) (0.135) (0.116) (0.154)
P3, 92 0.978 1.06 1.048 1.149 1.137 1.135
(0.266) (0.239) (0.226) (0.328) (0.338) (0.328)
P4, q1 1.083 1.059 1.075 1.081 1.029 1.061
(0.206) (0.2) (0.179) (0.261) (0.179) (0.128)
P4, 92 1.121 1.112 1.104 1.093 1.088 1.096
(0.192) 0.17) (0.174) (0.212) (0.191) (0.181)
Ps, g1 1.279 1.244 1.242 1.169 1.167 1.166
(0.322) (0.296) (0.29) (0.335) (0.327) (0.306)
Ps, g2 0.903 0.867 0.877 1.053 1.033 0.972
(0.078) (0.067) (0.074) (0.231) (0.192) (0.126)
Table 2: Dataset for N =100 & T =10
Average of RMSE & Standard deviation
ARMA ARMA-LSTM
AIC BIC MMLS7 AIC BIC MMLS7
P11 1.263 1.252 1.256 1.217 1.118 1.192
(0.167) (0.156) (0.159) (0.295) (0.119) (0.247)
P1, 92 2.641 2.554 2.694 1.771 1.848 1.803
(0.905) (0.838) (0.961) (1.135) (0.739) (1.373)
P2, 91 1.221 1.186 1.184 1.102 1.088 1.124
(0.139) (0.096) (0.102) (0.084) (0.083) (0.101)
P2, 92 1.044 1.145 1.041 1.138 1.153 1.136
(0.091) (0.108) (0.088) (0.255) (0.211) (0.256)
P3, 91 1.086 1.066 1.061 1.038 1.036 1.035
(0.181) (0.19) (0.182) (0.172) (0.171) (0.145)
p3, 92 1.112 1.096 1.101 1.202 1.153 1.099
(0.295) (0.309) (0.306) (0.38) (0.328) (0.264)
P4, q1 1.053 1.038 1.035 1.058 1.051 1.063
(0.22) (0.189) (0.185) (0.14) (0.124) (0.152)
P4, 92 1.263 1.247 1.238 1.204 1.191 1.183
0.2) (0.194) (0.21) (0.133) (0.114) (0.152)
Ps, 01 1.613 1.679 1.599 1.541 1.531 1.521
(0.27) (0.301) (0.342) (0.884) (0.609) (0.848)
Ps, 92 1.092 1.047 1.047 1.074 1.041 1.041
(0.132) (0.234) (0.114) (0.144) (0.117) (0.115)

Table 3: Dataset for N =100 & T = 30

The Table 2 show the result for the average of RMSE in the datasets for different

simulated ARMA parameter set, with the forecast window of 10. Table 3 provides the
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comparison of root mean squared error results of those datasets in different criteria, also
compare different simulated dataset with the forecast window of 30.

The large forecast window usually decreases the accuracy for the time series model,
T = 50 * window size is 50% for the size of in sample set, the MML87 hybrid model still
outperforms its peer. It indicates that the MML information criteria is efficient in the model
selection and the algorithm of the hybrid model is also efficient in time series analysis, the
result of T = 50 shown in the Table 8.

Table 4 show the average of the ten different parameters simulated dataset in the
forecast window sizes of T = 3, 10, 30 and 50 ¢ with the in sample size of N = 100.

Average of RMSE & Standard deviation

ARMA ARMA-LSTM
AIC | BIC | MMLS87 | AIC | BIC | MMLS87
T=3 | 1086 | 1.076 | 1.072 | 1.121 | 1.123 | 1.115
T=10 | 1.149 | 1.136 | 1.121 | 1.159 | 1.136 | 1.134
T=30| 1338 | 1.331 | 1.325 | 1.234 | 1.221 | 1.220
T=50 | 1.308 | 1.296 | 1.295 | 1.225 | 1.195 | 1.221

Table 4: Average of Table 1 to Table 3
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Figure 3. Comparison in different forecast windows

MMLSY7 is outperformed in the in-sample size of N = 100 in all the T = 3, 10, 30, and
50, the results show that the MMLS87 not only considers the goodness of fit of data, also
considers the model complexity. That’s why the Figure 3 show MMLS87 have lower Root
mean squared error in majority of case. The hybrid model selected by MMLS87 have the
lowest error rate in the T = 3, 10 and 30, it makes sense that the MML87 would be widely
used in the time series model selection. The results of N = 100 with T = 50 also show
that the large size of the forecast window, the complex hybrid model ARMA-LSTM is

4 Data provided by Table 8 in Appendix
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performed better than the simple time series model because the model will become more
accurate when forecasting in a long time after trained by larger amount of parameters.

Table 9 to Table 12 compare six different models or model selection techniques in the
RMSE of the dataset in N = 50, 200, 300, and 500 with the forecast window size T = 10.
The AIC tends to overfit in the small amount of data set such as N = 50 °. Through an
increase in the amount for the in-sample dataset, the RMSE decreases in the hybrid model
ARMA-LSTM because the larger size of data helps to LSTM to train and fit an accurate
model. So the results show the RMSE for model with MMLS87 is lower than the other
models than others in the N = 100, 200, and 300 because of the efficiency in controlling the
model complexity in MML87, the model can avoid the overfitting problem in the small size
of the dataset.

The hybrid model with LSTM is overfit the small in-sample size, because there are a
larger amount of parameters that need to be estimated than the ARMA model, the hybrid
model tends to perform well in the large in-sample size because deep learning model better
off in large in-sample size, such as N =200 ¢, 300 7, and 500 8.

For the small in-sample size, such as N = 50, BIC performance is good on hybrid
ARMA-LSTM, because BIC is able to select the model without overfitting. The MMLS87-
Hybrid have smallest average RMSE in the N = 100, 200 and 300 for the different random-
ized dataset, it states that the MML87 works well in the time series model selection, and
the model selected able to provide the lower forecasting errors. The hybrid models work
efficiently when there is enough or a large size of in-sample data, otherwise, it also overfits
the small dataset. In the meantime, by comparing the RMSE from MML87-ARMA and
AIC-ARMA and BIC-ARMA, the results favor the MML87 rather than the AIC and BIC, it
shows that the MMLB87 having a good performance in the time series model selection and
is able to select the ARMA model with lower forecasting errors.

Average of RMSE & Standard deviation
ARMA ARMA-LSTM
AIC | BIC | MML87 | AIC | BIC | MMLS87

N=50° [1.301 [1.291 [ 1.280 [ 1.224 [ 1.202 | 1.244
N=100 | 1.149 | 1.136 | 1.121 | 1.159 | 1.136 | 1.134
N=200° | 1.177 [ 1.187 | 1.183 | 1.159 | 1.161 | 1.154
N=3007 | 1.163 | 1.152 | 1.147 | 1.131 | 1.125 | 1.123
N=500% | 1194 | 1.197 | 1.196 | 1.180 | 1.173 | 1.181

Table 5: Average of Table 1 to Table 3

® N o G

Data provided by Table 9 in Appendix

Data provided by Table 10 in Appendix
Data provided by Table 11 in Appendix
Data provided by Table 12 in Appendix
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Figure 4. Comparison in different forecast windows

6.2. Financial data

The stock return prediction is one of most popular research topic in financial appli-
cation [27,31]. This section studies the performance of the hybrid model by MMLS87, and
hybrid model by AIC, BIC, and the ARIMA model selected by MMLS, AIC, and BIC. The
stock prices were selected from the components of the Dow Jones Industrial Average,
including Apple, Boeing, Cisco System, Goldman Sachs, IBM, Intel, Johnson & Johnson,
JPMorgan Chase, Coca-Cola, and 3M. The time horizontal of the data selected is adjusted
closed price for three years or 1,258 days in each trading day from 2016-09-23 to 2021-09-22.
This experimental studies the different performances in forecast window sizes T =3, 5, 10,
30, 50, 70, 100, 130, 150, and 200.

The empirical results show that the hybrid model ARIMA-LSTM can substantially
outperform the traditional time series ARIMA model, particularly in the size of forecast
window T= 5, 30, 100, 130, 150, and 200. Many studies demonstrated that the stock return
depends on various factors such as dividend yield, the book to market ratio, and/or interest
rate [27-29]. However, traditional linear time series models are difficult to consider the
effect of all those factors, it requires a more complex model to capture the information
hidden in residual from the ARIMA model. The hybrid model with LSTM is able to
capture the relation between publicly available information In order to make the stock
price stationary in time series analysis, the ARIMA models are using parameter d = 1
to differencing in one order. As the experimental results show, MMLS87 outperform the
other information-theoretic of AIC and BIC in term of lower root mean squared error for
out-of-sample forecasting.
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Mean S.D PACF1 PACE2 PACEF3
AAPL | 66.440217 | 37.060808 | 0.996875 | 0.044454 | -0.004848
BA 258.704781 | 82.478194 | 0.995870 | -0.031231 | -0.061804
CSCO | 40.585947 | 8.595774 | 0.994585 | 0.073202 | -0.016488
GS 227.095242 | 56.820929 | 0.993579 | 0.039741 | -0.043412
IBM | 124.851224 | 10.369478 | 0.982339 | 0.070195 | -0.040622
INTC | 46.269478 | 9.305502 | 0.992194 | 0.178757 | -0.053398
JNJ 130.715314 | 18.399352 | 0.993930 | 0.050988 | -0.031304
JPM | 104.046116 | 24.467471 | 0.993854 | 0.067756 | -0.049235
KO 44.519034 | 6.089778 | 0.993828 | 0.031639 | -0.039178
MMM | 173.550240 | 20.467854 | 0.991641 | 0.004475 | 0.026664

Table 6: Mean, standard deviation, pacf lag 1 to 3 for ten selected stocks

Log price

3.0
1

0 200 400 600 800 1000 1200

Figure 5. Log prices for ten selected stocks
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Average of RMSE & Standard deviation
ARMA ARMA-LSTM

AIC BIC MMLS87 AIC BIC MMLS87

T=3 2.987 3.027 3.075 4.414 4.302 4.289
(3.446) (3.555) (3.572) (4.75) (4.608) (4.616)

T=5 4.024 4.077 4.163 4.024 3.966 3.907
(5.091) (5.228) (5.086) (5.45) (5.42) (5.449)

T=10 4.748 4.747 4.868 5.359 5.261 5.249
(4.707) (4.858) (4.347) (5.429) (5.268) (5.262)

T =230 5.872 5.867 5.994 5.754 5.628 5.643
(6.797) (6.6) (5.662) (4.822) (4.687) (4.677)

T =50 7.834 7.609 6.659 7.328 7411 7.384
(7.511) (7.298) (6.966) (6.787) (6.879) (6.898)

T=70 9.991 9.909 9.645 10.393 10.221 10.085
(9.491) (9.316) (7.99) (8.048) (7.789) (7.612)

T=100 | 14.465 13.991 9.866 9.304 9.087 9.253
(17.187) | (15.428) | (10.854) | (9.256) (9.35) (9.486)

T=130 | 14.482 14.301 13.551 13.768 13.811 14.581
(9.714) | (10.571) | (10.238) | (10.598) | (11.124) | (10.972)

T=150 | 22985 22.985 18.045 17.778 17.526 17.461
(28.173) | (28.077) | (17.856) | (16.771) | (16.582) | (15.931)

T=200 | 31.144 30.502 30.286 26.831 26.424 26.507
(37.567) | (38.314) | (32.564) | (31.63) | (31.547) | (31.59)

Table 7: RMSE for different forecast window sizes

The hybrid model tends to outperform for large forecast window size rather than
the small forecast window size, because the large ahead size in forecasting has higher
uncertainty. For most of the financial security, there is high volatility in the long forecasts.
Also because of semi-strong market efficiency, which means the stock price fully and fairly
reflect publicly available information in time horizontal in forecast window, and also reflect
all past information. So it is more likely that a complex model will provide accurate results
in prediction for T greater than 100.
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7. Conclusions

We have investigated the time series modeling in the Minimum Message Length
framework using the Wallace and Freeman (1987) approximation [15]. The hybrid model
compares with the traditional time series model based on information-theoretic approaches
AIC, BIC and MMLS87. Two types of data are used in order to study the performances for
different models, the hybrid model performs usually performed better than the traditional
ARIMA model, and MMLSY is able to select the lower forecasting errors than the AIC and
BIC, as the experimental results show.
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Appendix A
Average of RMSE & Standard deviation
ARMA ARMA-LSTM
AIC BIC MMLS87 AIC BIC MMLS87
P1, 01 1.189 1.191 1.182 1.164 1.091 1.173
(0.217) (0.228) (0.222) (0.304) (0.212) (0.241)
P1,92 2.307 2.308 2.298 1.862 1.868 1.852
(0.458) (0.457) (0.466) (1.169) (1.16) (1.073)
P2, 91 1.113 1.092 1.094 1.058 1.045 1.059
(0.087) (0.103) (0.104) (0.073) (0.096) (0.139)
p2,q2 1.191 1.189 1.191 1.176 1.178 1.201
(0.096) (0.103) (0.1) (0.24) (0.259) (0.289)
P3,q1 1.094 1.093 1.097 1.101 1.061 1.093
(0.159) (0.157) (0.155) (0.192) (0.144) (0.115)
P3, 42 1.127 1.123 1.125 1.121 1.129 1.132
(0.06) (0.055) (0.058) (0.134) (0.155) (0.153)
P4, 01 1.188 1.189 1.192 1.136 1.095 1.139
(0.182) (0.188) (0.186) (0.137) (0.181) (0.113)
P4, 92 1.232 1.221 1.212 1.268 1.19 1.203
(0.165) (0.133) (0.134) (0.457) (0.269) (0.319)
Ps,q1 1.593 1.521 1.528 1.331 1.275 1.338
(0.304) (0.199) (0.209) (0.428) (0.234) (0.383)
Ps,q2 1.051 1.033 1.032 1.035 1.021 1.023
(0.083) (0.064) (0.063) (0.055) (0.067) (0.069)

Table 8: Dataset for N =100 & T =50
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Average of RMSE & Standard deviation

ARMA ARMA-LSTM
AIC BIC MMLS87 AIC BIC MMLS87
1,91 1.068 1.071 1.067 1.198 1.122 1.175
(0.147) (0.118) (0.115) (0.222) (0.305) (0.259)
1,92 1.994 1.994 2.04 1.93 1.932 1.921
(0.655) (0.655) (0.705) (1.553) (1.563) (1.566)
P2, 91 1.242 1.242 1.235 1.106 1.116 1.154
(0.213) (0.213) (0.17) (0.193) (0.196) (0.278)
P2, 92 1.185 1.183 1.232 1.163 1.194 1.254
(0.355) (0.359) (0.476) (0.386) (0.499) (0.601)
P3, 01 1.348 1.254 1.304 1.257 1.139 1.256
(0.557) (0.604) (0.575) (0.499) (0.605) (0.449)
P3, 42 1.283 1.283 1.291 1.198 1.198 1.215
(0.234) (0.234) (0.233) (0.27) 0.27) (0.285)
P4, q1 1.263 1.251 1.044 1.091 1.079 1.129
(0.461) (0.469) (0.172) (0.264) 0.27) (0.243)
P4, 92 0.987 0.987 0.989 1.007 1.017 0.999
(0.132) (0.132) (0.137) (0.137) (0.126) (0.138)
Ps, g1 1.533 1.426 1.464 1.227 1.178 1.254
(0.457) (0.535) (0.509) (0.442) (0.445) (0.434)
Ps, 92 1.101 1.098 1.137 1.061 1.068 1.08
(0.153) (0.151) (0.185) (0.168) (0.175) (0.117)
Table 9: Dataset for N =50 & T =10
Average of RMSE & Standard deviation
ARMA ARMA-LSTM
AIC BIC MMLS87 AIC BIC MMLS87
P1, 91 1.244 1.277 1.248 1.153 1.13 1.151
(0.365) (0.42) (0.404) (0.381) (0.376) (0.353)
1,92 1.359 1.359 1.359 1.474 1.491 1.474
(0.445) (0.445) (0.445) (0.813) (0.882) (0.813)
P2, 91 0.927 0.915 0.92 0.939 0.955 0.933
(0.183) (0.172) (0.182) (0.126) (0.15) (0.128)
P2, 92 1.184 1.191 1.189 1.134 1.114 1.106
(0.41) (0.398) (0.402) (0.368) (0.393) (0.37)
P3, 91 1.137 1.136 1.117 1.082 1.082 1.085
(0.347) (0.347) (0.355) (0.314) (0.316) (0.325)
P3, 42 0.915 1.038 0.991 1.088 1.083 1.054
(0.198) (0.08) (0.093) (0.184) (0.172) (0.161)
P4, 91 1.199 1.166 1.19 1.086 1.109 1.107
(0.558) (0.557) (0.562) (0.591) (0.507) (0.732)
P4, 92 1.108 1.101 1.129 1.184 1.186 1.184
(0.196) (0.191) (0.24) (0.358) (0.359) (0.36)
Ps, 01 1.581 1.584 1.586 1.383 1.391 1.382
(0.481) (0.475) (0.48) (0.83) (0.802) (0.832)
ps, 92 1.123 1.101 1.101 1.063 1.069 1.063
(0.263) (0.174) (0.174) (0.234) (0.133) (0.128)

Table 10: Dataset for N =200 & T =10
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References

Average of RMSE & Standard deviation

ARMA ARMA-LSTM
AIC BIC MMLS87 AIC BIC MMLS87
1,91 1.024 1.028 1.031 1.033 1.02 1.024
(0.312) (0.332) (0.322) (0.316) 0.27) (0.32)
1,92 2.008 1.995 1.988 1.709 1.72 1.72
(1.123) (1.024) (1.028) (0.918) (0.896) (0.854)
P2, 91 1.022 1.025 1.016 1.011 1.012 1.014
(0.144) (0.138) (0.133) (0.125) (0.121) (0.297)
P2, 92 1.172 1.168 1.166 1.164 1.177 1.17
(0.398) (0.383) (0.384) (0.422) (0.443) (0.413)
P3, q1 0.886 0.868 0.865 0.964 0.932 0.914
(0.198) (0.205) (0.215) (0.261) (0.183) (0.188)
P3, 42 1.07 1.068 1.059 1.096 1.095 1.092
(0.408) (0.412) (0.401) (0.284) (0.289) (0.284)
P4, q1 1.215 1.191 1.184 1.22 1.091 1.166
(0.445) (0.468) (0.464) (0.621) (0.42) (0.453)
P4, 92 1.191 1.167 1.162 1.182 1.188 1.184
(0.338) (0.308) (0.278) (0.427) (0.473) (0.433)
Ps, g1 1.169 1.159 1.152 0.997 1.071 1.01
(0.225) (0.216) (0.216) (0.131) (0.213) (0.146)
Ps, 92 0.874 0.846 0.844 0.936 0.939 0.938
(0.25) (0.249) (0.247) (0.213) (0.197) (0.196)
Table 11: Dataset for N =300 & T =10
Average of RMSE & Standard deviation
ARMA ARMA-LSTM
AIC BIC MMLS87 AIC BIC MMLS87
P11 0.988 0.966 0.968 1.016 1.012 1.014
(0.229) (0.233) (0.232) (0.178) (0.182) (0.179)
1,92 1.546 1.549 1.562 1.841 1.838 1.838
(0.728) (0.713) (0.703) (0.915) (0.875) (0.877)
P2, 91 1.002 1.017 1.016 1.008 1.008 1.05
(0.37) (0.349) (0.351) (0.329) (0.325) (0.349)
P2, 92 1.156 1.165 1.165 1.167 1.156 1.156
(0.188) (0.176) (0.176) (0.337) (0.355) (0.355)
P3, 91 1.091 1.093 1.09 1.064 1.06 1.058
(0.175) (0.18) (0.176) (0.225) (0.157) (0.22)
P3, 42 1.23 1.235 1.235 1.197 1.209 1.209
(0.372) (0.364) (0.364) (0.365) (0.393) (0.393)
P4, 91 1.041 1.07 1.063 1.135 1.053 1.139
(0.272) (0.25) (0.257) (0.342) (0.239) (0.343)
P4, 92 1.253 1.256 1.255 1.134 1.136 1.126
(0.265) (0.265) (0.266) (0.218) (0.214) (0.235)
Ps, 01 1.559 1.551 1.541 1.159 1.199 1.161
(0.363) (0.385) (0.365) (0.331) (0.421) (0.292)
Ps, 92 1.073 1.068 1.068 1.083 1.062 1.062
(0.179) (0.188) (0.188) (0.136) (0.167) (0.167)

Table 12: Dataset for N =500 & T =10
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