Working Paper Article Version 1 This version is not peer-reviewed

Presynaptic Release-Regulating Alpha2 Autoreceptors: Potential Molecular Target for Ellagic Acid Nutraceutical Properties

Version 1 : Received: 27 September 2021 / Approved: 1 October 2021 / Online: 1 October 2021 (14:27:20 CEST)

How to cite: Romeo, I.; Vallarino, G.; Turrini, F.; Roggeri, A.; Olivero, G.; Boggia, R.; Alcaro, S.; Costa, G.; Pittaluga, A. Presynaptic Release-Regulating Alpha2 Autoreceptors: Potential Molecular Target for Ellagic Acid Nutraceutical Properties. Preprints 2021, 2021100023 Romeo, I.; Vallarino, G.; Turrini, F.; Roggeri, A.; Olivero, G.; Boggia, R.; Alcaro, S.; Costa, G.; Pittaluga, A. Presynaptic Release-Regulating Alpha2 Autoreceptors: Potential Molecular Target for Ellagic Acid Nutraceutical Properties. Preprints 2021, 2021100023

Abstract

Polyphenol ellagic acid (EA) possesses anti-oxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and cardio protection activities, remarking it an interesting multi-targeting profile. EA also controls the central nervous system (CNS) since it was proven to reduce the immobility time of mice in both the forced swimming and the tail-suspension tests, with an efficiency comparable to that of classic antidepressants. Interestingly, the anti-depressant-like effect was almost nulled by the concomitant administration of selective antagonists of the noradrenergic receptors, suggesting the involvement of these cellular targets in the central effects elicited by EA and its derivatives. By in silico and in vitro studies, we discuss how EA engages with human α2A-ARs and α2C-AR catalytic pockets, comparing EA behaviour with those ones of known agonist and antagonist. Structurally, the hydrophobic residues surrounding α2A-AR pocket confer specificity on the intermolecular interactions and hence lead to favourable binding of EA in the α2A-AR, with respect to α2C-AR. Moreover, EA seems to better accommodate within α2A-ARs into TM5 area, closely to S200 and S204 which play a crucial role for activation of aminergic GPCRs such as the α2-AR, highlighting its promising role as a partial agonist. Consistently, EA mimics clonidine in inhibiting noradrenaline exocytosis from hippocampal nerve endings in an yohimbine-sensitive fashion that confirms the engagement of naïve α2-ARs in the EA-mediated effect.

Keywords

pomegranate tannins; ellagic acid; molecular modelling; α2-adrenoreceptors; α2-ARs; molecular dynamic simulations; antioxidant; natural compounds; antidepressant activity; food chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.