Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues

Version 1 : Received: 30 September 2021 / Approved: 1 October 2021 / Online: 1 October 2021 (11:30:39 CEST)

A peer-reviewed article of this Preprint also exists.

Singh, R.; Barrios, A.; Dirakvand, G.; Pervin, S. Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021, 10, 3030. Singh, R.; Barrios, A.; Dirakvand, G.; Pervin, S. Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021, 10, 3030.

Journal reference: Cells 2021, 10, 3030
DOI: 10.3390/cells10113030

Abstract

Obesity-associated metabolic abnormalities comprise of a cluster of conditions including dyslipidemia, insulin resistance, diabetes, and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. Variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. Substantially decreased BAT activity in individuals with obesity indicates a role for BAT in setting of human obesity. On the other hand, BAT mass and its prevalence has been reported to correlate with lower body mass index (BMI), decreased age and glucose levels, leading to lower incidence of cardio metabolic diseases. Increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. Deeper understanding of the role of BAT in human metabolic health and its inter-relationship with body fat distribution and deciphering proper strategies to increase energy expenditure by either increasing functional BAT mass, or inducing white adipose browning holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.

Keywords

Brown adipose tissue; beige adipose tissue; obesity; cold exposure; uncoupling protein-1, beta-adrenergic receptor; energy expenditure; adipose browning; micro-RNA

Subject

LIFE SCIENCES, Endocrinology & Metabolomics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.