Preprint
Article

A Social Recommendation Based on Metric Learning and Users’ Co-occurrence Pattern

This version is not peer-reviewed.

Submitted:

28 September 2021

Posted:

29 September 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
For personalized recommender systems,matrix factorization and its variants have become mainstream in collaborative filtering.However,the dot product in matrix factorization does not satisfy the triangle inequality and therefore fails to capture fine-grained information. Metric learning-based models have been shown to be better at capturing fine-grained information than matrix factorization. Nevertheless,most of these models only focus on rating data and social information, which are not sufficient for dealing with the challenges of data sparsity. In this paper,we propose a metric learning-based social recommendation model called SRMC.SRMC exploits users' co-occurrence pattern to discover their potentially similar or dissimilar users with symmetric relationships and change their relative positions to achieve better recommendations.Experiments on three public datasets show that our model is more effective than the compared models.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

161

Views

184

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated