Preprint
Article

This version is not peer-reviewed.

Convection – Diffusion – Radiation Heat and Mass Transfer to a Sphere Accompanied by a Surface Exothermal Chemical Reaction

Submitted:

27 September 2021

Posted:

28 September 2021

You are already at the latest version

Abstract
The steady-state, coupled heat and mass transfer from a fluid flow to a sphere accompanied by an exothermal catalytic chemical reaction on the surface of the sphere is analysed taking into consideration the effect of thermal radiation. The flow past the sphere is considered steady, laminar and incompressible. The radiative transfer is modeled by P0 and P1 approximations. The mathematical model equations were discretized by the finite difference method. The discrete equations were solved by the defect correction – multigrid method. The influence of thermal radiation on the sphere surface temperature, concentration and reaction rate was analysed for three parameter sets of the dimensionless reaction parameters. The numerical results show that only for very small values of the Prater number the effect of thermal radiation on the surface reaction is not significant.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated