Preprint
Article

This version is not peer-reviewed.

An Analysis of COVID-19 in Europe Based on Fractal Dimension and Meteorological Data

Submitted:

23 September 2021

Posted:

24 September 2021

You are already at the latest version

Abstract
The present paper proposes a fractal analysis of the Covid-19 dynamics in 45 European countries. We introduce a new idea of using the box-counting dimension of the epidemiologic curves as a means of classifying the Covid-19 pandemic in the countries taken into consideration. The classification can be a useful tool in deciding upon the quality and accuracy of the data available. We also investigated the reproduction rate, which proves to have significant fractal features, thus enabling another perspective on this epidemic characteristic. Moreover, we studied the correlation between two meteorological parameters: global radiation and daily mean temperature and two Covid-19 indicators: daily new cases and reproduction rate. The fractal dimension differences between the analysed time series graphs could represent a preliminary analysis criterion, increasing research efficiency. Daily global radiation was found to be stronger linked with Covid-19 new cases than air temperature (with a greater correlation coefficient -0.386, as compared with -0.318), and consequently it is recommended as the first-choice meteorological variable for prediction models.
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated