Preprint
Article

Predicting Patient No-Show Using Machine Learning Techniques in the Healthcare Sector

Submitted:

18 September 2021

Posted:

20 September 2021

You are already at the latest version

Abstract
Today, across the most critical problems faced by hospitals and health centers are those caused by the existence of patients who do not attend their appointments. Among others, this practice generates waste of resources and increases the patients’ waiting list. To handle these problems, hospitals are actively trying to implement methods to reduce the idle time caused by patient no-shows. Many scheduling systems developed require predicting whether a patient will show up for an appointment or not. Although, a challenging problem resides in obtaining these estimates precisely. The goal of this work is to analyze how objective factors influence a patient not to attending their appointment, to identify the main causes that contribute to a patient’s decision, and to be able to predict whether or not the patient will attend the scheduled appointment. As a result, the obtained model is tested on a real dataset collected in a health center linked to the University of Vale do Itajaí (UNIVALI), which includes 25 features and about 5000 samples. The algorithm that produced the best results for the available dataset is the Random Forest classifier. It reveals the best recall rate (0.91), since it measures the ability of a classifier to find all the positive instances and achieves a receiver operating characteristic curve rate of 0.969.
Keywords: 
Artificial Intelligence; Data Science; HealthCare Applications; Machine Learning; Patient Attitudes
Subject: 
Engineering  -   Control and Systems Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

461

Views

332

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated