Monjezi, M.; Rismanian, M.; Jamaati, H.; Kashaninejad, N. Anti-Cancer Drug Screening with Microfluidic Technology. Appl. Sci.2021, 11, 9418.
Monjezi, M.; Rismanian, M.; Jamaati, H.; Kashaninejad, N. Anti-Cancer Drug Screening with Microfluidic Technology. Appl. Sci. 2021, 11, 9418.
Monjezi, M.; Rismanian, M.; Jamaati, H.; Kashaninejad, N. Anti-Cancer Drug Screening with Microfluidic Technology. Appl. Sci.2021, 11, 9418.
Monjezi, M.; Rismanian, M.; Jamaati, H.; Kashaninejad, N. Anti-Cancer Drug Screening with Microfluidic Technology. Appl. Sci. 2021, 11, 9418.
Abstract
The up-and-coming microfluidic technology is the most promising platform for designing anti-cancer drugs and new point-of-care diagnostics. Compared to conventional drug screening methods based on Petri dishes and animal studies, drug delivery in microfluidic systems has many advantages. For instance, these platforms offer high throughput drug screening, require a small amount of samples, provide an in vivo-like microenvironment for cells, and eliminate ethical issues associated with animal studies. Multiple cell cultures in microfluidic chips could better mimic the 3D tumor environment using low reagents consumption. The clinical experiments have shown that combinatorial drug treatments have a better therapeutic effect than monodrug therapy. So many attempts were performed in this field in the last decade. This review highlights the applications of microfluidic chips in anti-cancer drug screening and systematically categorizes these systems as a function of sample size and combination of drug screening. Finally, it provides a perspective on the future of the clinical applications of microfluidic systems for anti-cancer drug development.
Keywords
drug screening; monodrug or combinatorial drug screening; anti-cancer
Subject
Medicine and Pharmacology, Oncology and Oncogenics
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.