Preprint
Article

A Study of a Gain Based Approach for Query Aspects in Recall Oriented Tasks

This version is not peer-reviewed.

Submitted:

12 September 2021

Posted:

13 September 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Evidence-based healthcare integrates the best research evidence with clinical expertise in order to make decisions based on the best practices available. In this context, the task of collecting all the relevant information, a recall oriented task, in order to take the right decision within a reasonable time frame has become an important issue. In this paper, we investigate the problem of building an effective Consumer Health Search (CHS) systems that use query variations to achieve high recall and fulfill the information needs of health consumers. In particular, we study an intent-aware gain metric used to estimate the amount of missing information and make a prediction about the achievable recall for each query reformulation during a search session. We evaluate and propose alternative formulations of this metric using standard test collections of the CLEF 2018 eHealth Evaluation Lab CHS.
Keywords: 
Query Variations; Query Reformulations; Query Performance Prediction; Systematic Reviews
Subject: 
Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

104

Views

193

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated