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Abstract: Evidence-based healthcare integrates the best research evidence with clinical expertise in
order to make decisions based on the best practices available. In this context, the task of collecting all
the relevant information, a recall oriented task, in order to take the right decision within a reasonable
time frame has become an important issue. In this paper, we investigate the problem of building an
effective Consumer Health Search (CHS) systems that use query variations to achieve high recall and
fulfill the information needs of health consumers. In particular, we study an intent-aware gain metric
used to estimate the amount of missing information and make a prediction about the achievable
recall for each query reformulation during a search session. We evaluate and propose alternative
formulations of this metric using standard test collections of the CLEF 2018 eHealth Evaluation Lab
CHS.

Keywords: Query Variations; Query Reformulations; Query Performance Prediction; Systematic
Reviews

1. Introduction

The study of the query representation in Information Retrieval has driven a lot of
interest in recent years [1–5]. Several works in the past [6–8] showed the positive effect
on the retrieval results of fusing runs retrieved with human-made multiple formulations
of the same information need. Recent studies have shown how query reformulations
automatically extracted from query logs can be as effective as those manually created
by users [9]. Furthermore, the performance of a system can greatly improve when the
“right” formulation of an information need is selected [4,10]. One of the main challenges in
this research area is being able to suggest the best performing query (or queries) among
the possible variations [4,10–12]. For example, Thomas et al. [4] observed that, the most
prominent effect in predicting the performance of a query formulation is due to the infor-
mation need and not to the “query wording”. In this sense, query performance predictors
actually predict the complexity of the information need, rather than the one the query itself.
Zendel et al. [10] pursue a slightly different task. Following the literature on reference
lists [13,14] they try to predict the performance for a query using information about queries
representing the same information need. Benham et al. [15] define a fusion approach for
multiple query formulations based on the concept of “topic centroid”, which describes
the information need as combination of its formulations. Dang et al. [11] address also the
problem of improving the ranking results through a query formulation selection phase.
Note that, they show that they show how they are often capable of putting the best query
in the first two positions, a further evidence of the complexity of the task.

A use case of query performance prediction is the systematic compilation of literature
review. In fact, systematic reviews are scientific investigations that use strategies to include
a comprehensive search of all potentially relevant articles. As time and resources are
limited for compiling a systematic review, limits to the search are needed: for example,
one may want to estimate how far the horizon of the search should be (i.e. all possible
cases/documents that could exist in the literature) in order to stop before the resources are
finished [16]. Scells et al. [12] apply several state-of-the-art Query Performance Predictors
to select the best query in the Systematic Reviews domain. They show how current Query
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Performance Prediction approaches perform poorly on this specific task. International
evaluation campaigns have organized labs in order to study this problem in terms of
the evaluation, through controlled simulation, of methods designed to achieve very high
recall [17,18]. The CLEF initiative1 has promoted the eHealth track since 2013 and, the
CLEF 2018 eHealth Evaluation Lab Consumer Health Search (CHS) task [19] investigated
the problem of building search engines that are robust to query variations to support
information needs of health consumers.

In this paper, we study an alternative formulation of the intent-aware metric proposed
by Umemoto et al. [20], in which the authors analyze a metric to estimate the amount
of missing information for each query reformulation during a search session. Note that
in [20] the authors do not propose an approach capable of predicting the recall of different
formulations. Nevertheless, our perception is that, their approach can be easily adapted
with good results also to the predictive task. In our case, our research goal is to understand
whether a gain based approach can be used to predict the relative importance of each
reformulation in terms of recall performance, in the context of Consumer Health Search
where users need support for medical information needs.

In this sense, with respect to [20], our contribution is two-fold:

• we show that it is possible to apply the GAIN measure proposed in [20] to obtain a
recall predictor over a set of formulations for the same topic;

• we furthermore show how to improve the results of such predictor by exploiting also
the information obtained through the various formulations.

The paper is organized as follows: in Sec.2, we present the original gain metric, while
in Sec. 3 we define our alternative version to predict the performance in a recall-oriented
fashion. In Sec. 4, we discuss the experimental analysis and results; while in Sec. 5 we give
our final remarks.

2. A GAIN-based Approach

In [20], Umemoto et al. define the intent-aware gain metric and the requirements that
it should satisfy. They identify the following properties: importance, documents relevant to
a central aspect of the search topic produce higher gain than those relevant to a peripheral
one; relevance, highly relevant documents produce higher gain than partially relevant
ones; novelty, documents relevant to an unexplored aspect produce higher gain than those
relevant to a fully explored aspect.

The set of aspects At of a topic t is estimated through the process described in [21]:
first, a set of subtopics St is mined given a topic t; then, the subtopics are grouped into a
set of clusters Ct. These clusters are regarded as the “facets”2 of t. The most representative
subtopic s is chosen from each cluster as formulation of the topic aspect a using the formula
a = argmaxs∈Ct Impt(s), where the importance of a subtopic s is defined as:

Impt(s) = ∑
d∈DN

s ∩d∈DN
t

1
Rankt(d)

(1)

DN
s and DN

t denote the sets of the top N retrieved documents for a subtopic s and the topic
t, respectively, and Rankt(d) is the rank of the document d in the ranked list for t.

It is crucial to stress that the definition of importance, and the following definition of
gain, derives from the assumption that there is a known “reference” topic t that describes
completely the information need for which the retrieved documents can be different from
the one observed for a query which represents just one aspect a of the topic. In Fig. 1, we
show an example of a number of subtopics found for a topic t and grouped into three
clusters, each one with a representative aspect.

1 http://www.clef-initiative.eu
2 We use facets instead of aspects to not repeat the same term that will be use to identify the most representative subtopic.
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Figure 1. An example of clusters of subtopics and aspects

The Intent-Aware Gain is defined for a set of documents D as:

Gain-IAt(D) = ∑
a∈At

P(a|t) ·Gaint,a(D) (2)

which is a sort of expected value of the gain across the different aspects. P(a|t) is the
probability that an aspect a is important to the topic t, and Gaint,a(D) is the gain that can be
obtained by the aspect a from the documents D. The importance probability for an aspect
of a topic is computed as:

P(a|t) =
Impt(a)

∑a′∈At Impt(a′)
(3)

while the gain which measures how the documents D retrieved for a query contribute to
increment the information relative to a specific aspect of the topic is:

Gaint,a(D) =

[
1− ∏

d∈D
(1− Relt,a(d))

]
(4)

This last part that is required to compute the Intent-Aware Gain contains the term Relt,a(d)
which is the relevance degree of a document d with respect to an aspect a, estimated as
follows:

Relt,a(d) =
∑s∈Ca Impt(s) · Rels(d)

∑s∈Ca Impt(s)
(5)

where Ca ∈ Ct is a the cluster of subtopics belonging to the aspect a, and Rels(d) is the
relevance degree of a document d to a subtopic s estimated as Rels(d) = 1/

√
Ranks(d).

3. A Gain for Query Reformulations

Our initial hypothesis in this work is that: a) we have one information need expressed
with different query reformulations, and b) the topic t is unknown. In particular, given
an information need i and its set of reformulations Vi, we assume that each reformulation
q ∈ Vi is able to ‘reveal’ different facets of i. Consequently, we need to redefine the
expression of the gain of Eq.4 as:

Gaini,q(D) =

[
1− ∏

d∈D
(1− Reli,q(d))

]
(6)

where i is the information need and q a specific (re)formulation.
The main difference with the original approach, apart from changing variable names, is

the fact that i) we do not have a ‘reference’ topic t that describes completely the information
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need i, and ii) we have one single cluster of query reformulations, or variants, Vi. For these
reasons, we also need an alternative definition of relevance that adapts to our case study:

Reli,q(d) =
∑s∈Vi

Impq(s)Rels(d)

∑s∈Vi
Impq(s)

(7)

where the relevance of d, retrieved by the query variant q of the information need i, is
computed as the weighted average of the relevance of d with respect to all the alternative
reformulations in Vi. The two terms Impq(s) e Rels(d) remain unaltered compared to the
previous definitions:

Impq(s) = ∑
d∈DN

s ∩DN
q

1
Rankq(d)

, Rels(d) =
1√

Ranks(d)

3.1. A Similarity Matrix for Recall Prediction

In the proposed context, we can think of an ‘optimal’ query as the one capable of
combining all the diverse facets of the information need it represents. In order to estimate
which query reformulation q is the closest to the unknown optimal one, we propose the
following procedure:

1. we define Dq as the set of documents retrieved by q;
2. Di =

⋃
q∈Vi

Dq as the set of all documents retrieved by at least one reformulation q;
3. R ∈ R|Vi |×|Di | as the matrix of rankings for the information need i where each row

corresponds to a specific reformulation and each column to a document. The value
of an element rk,d of R is defined as |Dq| − ρq,d where ρq,d is the rank of document d
retrieved by q. R is at the end normalized with norm l2.

At this point, we want to build a similarity matrix to predict the impact in terms of recall
that each reformulation will have on the retrieval. We compute the cosine similarity
between each pair of rows in R, obtaining a symmetric matrix S where each row (or
column) represents how a reformulation is similar to the others. We use the sum the k-th
row (or column) of S to predict the importance of the k-th query; then, we order the query
reformulations in decreasing order where greater values indicate a higher probability of
retrieving more relevant documents. This measure describes how close each query is to the
ideal “centroid” query that perfectly describes the topic.

4. Experiments and Analysis

In this section, we describe the analysis of our experiments. In particular, we want to
compare the performance in terms of predicted recall among: i) the gain defined in Eq 6,
ii) an alternative definition that mitigates some arithmetical issues, iii) and the similarity
matrix.

4.1. Test Collection and Retrieval Model

The CLEF 2018 eHealth Evaluation Lab Consumer Health Search (CHS) task [19]
investigated the problem of retrieving Web pages to support information needs of health
consumers that are confronted with a health problem or a medical condition. One subtask
(i.e., subtask 3) of this lab is aimed to foster research into building search systems that are
robust to query variations.3

Queries There are 50 information need for which we have 7 query reformulation for a total
of 350 queries: the original 50 queries issued by the general public augmented with 6 query
variations issued individually by 6 research students with no medical knowledge.4

3 https://github.com/CLEFeHealth/CLEFeHealth2018IRtask
4 The queries and the process to obtain them are described in http://www.khresmoi.eu/assets/Deliverables/WP7/KhresmoiD73.pdf

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2021                   

https://github.com/CLEFeHealth/CLEFeHealth2018IRtask
http://www.khresmoi.eu/assets/Deliverables/WP7/KhresmoiD73.pdf


5 of 12

Collection The collection contains 5,535,120 Web pages and it was created by compiling
Web pages of selected domains acquired from the CommonCrawl [19].
Relevance Assessments For each information need, the organizers of the task provided
about 500 documents assessed for a total of 25,000 topic-document pairs.
Retrieval Model The index provided by the organizers of the task, an ElasticSearch index
version 5.1.1, comes with a standard BM25 model with parameters b = 0.75 and k1 = 1.2.5

Caveat The queries 160006 and 164007 will not retrieve any document in common with the
other variants of the same information need (at least for N ≤ 1000). The content of query
160006 contains only “nan”, while query 164007 has a typo “pros and cons spirculina”,
instead of spirulina, a type of algae. For those queries, it will not be possible to compute
the value of the gain by definition.

4.2. Using traditional Query Performance Predictors applied to recall prediction for systematic
reviews

To have a better grasp on the peculiarities of the problem, we first try to apply
traditional techniques of Query Performance Prediction (QPP) to our specific setting.
More in detail, we select a set of very well-know QPP models, in order to determine
whether they can be satisfactory applied to the prediction of the recall and can be used
with the documents and queries that we have at hand. Traditionally, Query Preformance
Predictors are divided into two macro-categories, according to the information they exploit
to formulate the prediction: Pre-retrieval predictors and Post-retireval Predictors. Pre-
retrieval predictors analyze query and corpus statistics prior to retrieval [22–27] and post-
retrieval predictors that also analyze the retrieval results [13,28–35]. Even though Pre-
retrieval predictors have the advantage of being faster, since they do not need to retrieve
the documents for a certain run, post-retrieval predictors typically perform better. Table 1
reports the predictors that we include in our analyses and a brief description of how they
work. It is important to notice that, as for many QPP models, the models that we selected
do not actually predict the performance measure. They associate a score to each of the
queries, which is expected to correlate with the performance measure, but is on a different
scale and cannot be used directly as estimate of the performance.

The traditional strategy to evaluate how good a query performance predictor is, con-
sists in computing a traditional retrieval performance measure, such as Average Precision
(AP), for each of the query, and determine how much such measure correlates with the
prediction scores computed by the QPP model [22–25,27,31–34,37,40,41]. Notice that, there
are two main aspects that might impair traditional QPP models in our specific setting:

• We do not need to estimate the AP, which is a precision based measure, but our aim is
to predict which query will have the best recall;

• We do not compare queries meant for different information needs, which is the typical
evaluation scenario for QPP models.

On the other hand, we aim at understanding which one, among a set of queries representing
the same information need, achieve the best result.

To determine whether we are impaired by the first problem, we first apply the tra-
ditional QPP considering only the default formulation of each topic, and we compare
whether the predictors are capable of correctly determining the inter-topic performance.
More in detail, with this first experiment, we are interested in understanding whether the
baseline predictors are capable of predicting which topic will have the best recall, using a
single formulation for each of them. Table 2 reports the result of such analysis

We can observe that, by looking at Table 2, the results are in line with previous similar
experiments in the literature, such as [5,42]. Almost all the predictors are able to achieve a
significant correlation with the recall (with level α = 0.01). Two noticeable exceptions are
represented by nqc and smv: traditionally, they are considered among the best predictors,
but in this specific scenario they fail, with correlations not statistically different from 0. Our

5 https://sites.google.com/view/clef-ehealth-2018/task-3-consumer-health-search
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Table 1: Pre- and Post-retrieval predictive baseline models considered.

type predictor description

pre-retrieval

max-idf [26] It considers the maximum value of
the id f over the query terms

mean-idf [36] It computes the mean value of the
id f over the query terms

std-idf [36] It uses the standard deviation of the
id f over the query terms

sum-scq [27] Measures similarity based on c f .id f
to the corpus, summed over the
query terms.

mean-scq [27] It relies on the same value of sum-
scq, but it normalizes it with the
length of the query

max-scq [27] It relies on the same value of sum-
scq, but considers only the maxi-
mum value

post-retrieval

wig [37] Standard deviation of the top docu-
ments scores in the retrieval list.

nqc [38] Difference between the mean re-
trieval score of the top documents,
scaled by the score of the entire cor-
pus

smv [39] It computes the prediction consid-
ering the standard deviation of the
retrieval scores

hypothesis is that, while pre-retrieval predictors tend to be estimators of the recall base
of a query, and therefore tend to correlate with the recall itself, post-retrieval predictors
tend to compute their predictors based on the scores that the retrieval model assigns to the
top-ranked documents. In this sense, post-retrieval predictors are “top-heavy”: they focus
on the upper part of the ranked list of documents. This behaviour favours predicting the
performance for top-heavy measures, such as Average Precision or nDCG. Instead, our task
consists in predicting the recall, given a long list of documents. It is not unlikely that the
upper part of the list of retrieved documents is saturated with relevant ones; nevertheless,
we are more interested in being sure that every relevant document has been considered,
rather than saying whether the top part of the ranked list contains relevant documents.

We now switch the focus from predicting the performance across topics, to predict
the performance within topics. Instead of comparing the performance that the standard
formulation is expected to achieve for each topic, we try to sort different formulations
for the same topic, according to the predicted performance. Table 3 reports the results
of our analysis. Compared to the results observed in Table 2, the performance achieved
by traditional predictors for the “within”-topics prediction, is extremely lower, with very
few cases of significantly positive correlation between the predicted and observed recall.
Note that, even though we agree with [12] on the fact that predicting the best query among
a series of formulations of a topic is a hard task, we end up with diametrically opposite
conclusions. Scells et al. [12] observed severe flaws in traditional QPP techniques when pre-
dicting the performance across topics. On the other hand, they found the task of predicting the
performance within topics (which they refer to as Query Variation Performance Prediction
(QVPP)) to be easier, achieving higher (although still very low) results. What we observe
here, is diametrically opposite: we found the worst results when predicting results within
topics, and performance in line with previous literature for the predictions across topics.
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Table 2: Kendall’s τ correlation observed between recall and prediction scores for both
pre- and post-retrieval traditional predictors, if we compare the default formulations of
different topics. Results are in line with correlation values previously observed in other
scenarios. The symbol † indicates that the correlation is statistically greater than 0 at level
α = 0.05, while the ‡ indicates a significance level of 0.01

type predictor kendall’s τ

100 1000 10000

pre-retrieval

max-idf 0.3185‡ 0.3260‡ 0.2875‡

mean-idf 0.2996‡ 0.3218‡ 0.2555‡

std-idf 0.2947‡ 0.2989‡ 0.2343†

sum-scq 0.2637‡ 0.2581‡ 0.1739
mean-scq 0.3479‡ 0.3652‡ 0.3299‡

max-scq 0.3502‡ 0.3724‡ 0.2833‡

post-retrieval
wig 0.3029‡ 0.3218‡ 0.2882‡

nqc 0.2865‡ 0.1911 0.1135
smv 0.1797 0.1332 0.0229

4.3. Analysis of the Results

Given what we observed in Subsection 4.2, we are interested in understanding whether
the GAIN-based proposed by [20] (cfr. Equation 4) can overcome the problems in this
specific setting shown by traditional QPP models. The results are shown in Figures 2a,
2d and 2h. Each figure is divided into two parts: top, we show the distribution of values
of the GAIN (or similarity), ordered increasingly, for each query reformulation (350 in
total); bottom, we plot for each topic (50 topics) the value of the correlation Kendall τ
between the query reformulations ordered by decreasing GAIN (or similarity) and the
reformulations ordered by decreasing true recall. The blue dots indicate a statistically
significant correlation greater (or lower) than zero, while black dots the topics for which it
is not possible to compute the correlation.

4.3.1. Saturated GAIN distribution

In Figures 2a, 2d, and 2h, we show that the value of the gain saturates to 1 for most
query reformulation. This is more evident when we increase the number of documents
N of Eq. 6 from N = 100 up to N = 10000. This behavior, due to the importance in Eq. 1
that multiplies N numbers less than one, makes the GAIN not useful to discriminate the
different query variants of an information need, since every variant will have gain equal to
1. In addition, when all the reformulations have the same gain, it is impossible to compute
the Kendall τ correlation to predict the performance (black dots with correlation value 0
in the figure). Being not saturated is not by itself a desirable feature for the gain measure.
Nevertheless, the faster the gain saturates, the harder it is to discriminate between different
formulations. In this sense, a GAIN measure capable of spreading better the options in the
entire domain is preferable.

4.3.2. Alternative GAIN Definition

In order to mitigate the aforementioned problems, we propose an alternative definition
of the gain of Eq. 6 substituting the product with an average:

GAINi,q(D) =

[
1−

∑d∈D(1− Reli,q(d))
|D|

]
(8)

The results of this new formulation are shown in Figures 2b, 2e, and 2g. The distribution of
the gain is more spread across all the reformulations and does not saturate to one. There is
also a more stable prediction of the performances for each topic: the number of statistically
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Table 3: Performance achieved by traditional predictors, applied to our specific case. Each
predictor has been used to predict the performance of the different formulations. We report
the mean score and standard deviation of the correlation computed over the different
topics. We also report the first quartile, third quartile and number of topics for which
the correlation between the predicted and observed recalls for their (re)formulations is
significantly greater than 0.

kendall’s τ

type predictor cutoff Q1 mean (std) Q3 sign.

pre-retrieval

max-idf
100 -0.5417 -0.1085 (0.4825) 0.1183 3
1000 -0.5295 -0.0973 (0.4755) 0.2263 1
10000 -0.5699 -0.1227 (0.4628) 0.1584 2

mean-idf
100 -0.4214 -0.0449 (0.5272) 0.3333 4
1000 -0.4821 -0.0617 (0.4898) 0.2167 4
10000 -0.4214 -0.0549 (0.4698) 0.2473 3

std-idf
100 -0.4880 -0.1606 (0.4927) 0.0915 4
1000 -0.4190 -0.0999 (0.5107) 0.1938 5
10000 -0.4064 -0.1537 (0.4347) 0.1576 1

sum-scq
100 -0.2381 -0.0102 (0.4021) 0.2381 1
1000 -0.2985 0.0893 (0.4276) 0.4000 4
10000 -0.3126 0.0150 (0.4558) 0.2750 5

mean-scq
100 -0.3250 0.0322 (0.5231) 0.3901 6
1000 -0.3898 0.0135 (0.4838) 0.3333 5
10000 -0.3250 0.0005 (0.4505) 0.2985 3

max-scq
100 -0.3541 -0.0369 (0.4333) 0.2765 1
1000 -0.3341 -0.0312 (0.4447) 0.2568 2
10000 -0.3459 -0.0484 (0.4441) 0.1912 2

post-retrieval

wig
100 -0.6790 -0.1743 (0.5206) 0.1376 4
1000 -0.4088 -0.0266 (0.5031) 0.2519 6
10000 -0.4214 0.0171 (0.5185) 0.3849 6

nqc
100 -0.5611 -0.0880 (0.5554) 0.2381 6
1000 -0.4405 -0.1244 (0.5004) 0.1511 4
10000 -0.4850 -0.1539 (0.4991) 0.1539 3

smv
100 -0.5621 -0.1653 (0.4836) 0.1849 1
1000 -0.5542 -0.1626 (0.4604) 0.1859 0
10000 -0.6243 -0.2207 (0.4882) 0.0994 2

significant predictions of the recall of the reformulation is between 17 and 19, from N = 100
and N = 10000; in addition, the number of negative correlations (wrong predictions of
performance) decreases. This indicates (as we may expect) that with more information
(more documents, greater N) we can predict better the order of importance, in terms of
recall, of each reformulation.

4.3.3. Using Similarity Matrix for Recall Prediction

In Figures 2c, 2f, and 2i, we show the ability to predict the performance of a query
reformulation using the correlation between the similarity-based approach presented in
Sec. 3.1. The values of the Similarity are spread and do not saturate to the maximum
value of the sum of a row of S (in our experiments equal to 7). By increasing the number
N of documents, we improve the capability to predict the performance of the query
reformulation; in particular, there are no statistically significant negative correlation and
the total number of negative correlations decreases from N = 100 to N = 10000.

Besides the qualitative aspects, Table 4 reports also the numerical performance com-
parison between the GAIN as proposed by [20], its version which employs the mean, and
the similarity-based gain.
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Table 4: Kendall’s τ correlation observed for the task of predicting the query formulation
recall, using the similarity based approaches. Note that all the methods considered perform
better than traditional predictors(cft Tbl. 3). In bolt, best mean score for each cutoff

Kendall’s τ

predictor cutoff Q1 mean (std) Q3 sign.

Original Gain [20]
100 0.0000 0.3422 (0.4696) 0.6831 15
1000 0.0000 0.3783 (0.3527) 0.6609 13
10000 0.0000 0.1600 (0.2606) 0.4765 2

Mean Gain
100 0.1456 0.3822 (0.4936) 0.7320 16
1000 0.2417 0.4042 (0.4796) 0.7320 17
10000 0.2709 0.5111 (0.3984) 0.8000 19

Similarity based Gain
100 0.1429 0.3768 (0.4636) 0.6581 13
1000 0.3083 0.5069 (0.3505) 0.7143 17
10000 0.2521 0.5443 (0.3930) 0.8876 24

4.3.4. Final Remarks

In this last section of the analysis of the results, we want to briefly summarize our
findings. As a remainder, we want to point out that, the GAIN measure proposed by [20],
was originally used to estimate the missing information that the user could have gained,
by using different subtopic formulations, showed in a user-interface. Although such task
shares similar aspects with the one of predicting the recall, they are not fully overlapping.
Our main contributions in this paper are:

• First, adapting an already established technique to a different task. In this sense, to the
best of our knowledge, this is the first effort in adapting the GAIN measure proposed
by Umemoto et al. [20] to the query formulation recall prediction task.

• Secondly, its “mean” version, which we refer to as “Mean Gain”, is observed here for
the first time, as a better adaptation of [20] to the predictive task.

• Finally, the Similarity-based Gain is a completely new contribution of this manuscript,
which exploits similar elements to the gain measure proposed by Umemoto et al. [20].

Table 4 shows that the similarity based gain has the overall best performance both compared
to other gain based measures and traditional predictors (cfr. Table 3). Interestingly, while
the original gain worsen with the increase of the cutoff (as observed both in Tables 2 and 3),
both the mean based and the similarity one tend to improve their performance when the
cutoff increase. The original gain suffers of the “saturated gain”, as reported in 4.3.1, while
our proposal (both mean and similarity) improve as new relevant information is added.

5. Conclusions and Future Work

In this paper, we have presented a study that evaluates different definitions of the
GAIN of a reformulation for an information need. We adapted the definition of gain
proposed by Umemoto et al. [20] to the context of Consumer Health Search, and we used a
standard test collection to evaluate our hypotheses: can we use the gain metric to predict
the performance of each reformulation? Is there a better formulation that can produce an
order of the importance of each reformulation in terms of recall?

We found that for recall based tasks where the number of documents to retrieve may
be large, N > 100 , the original definition of GAIN saturates quickly to 1. We proposed an
alternative definition that mitigates this problem, and we also presented a similarity based
approach that tries to capture the ‘optimal’ query reformulation among all the available
formulations of an information need. The analysis of the results confirms that our approach
significantly improves the prediction of the order of importance of each reformulation in
terms of recall.

We are currently investigating the possibility to smooth the contribution of each
reformulation in the similarity matrix S with a locality parameter w. This parameter can be

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 September 2021                   



10 of 12

used as an exponent for each element of S and decide whether to get reformulations closer,
w < 1, or push them far away, w > 1, to create sub-clusters of reformulations and obtain a
better prediction.
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