Preprint
Article

This version is not peer-reviewed.

Improved Lipophilicity and Aqueous Solubility Prediction With Composite Graph Neural Networks

A peer-reviewed article of this preprint also exists.

Submitted:

30 August 2021

Posted:

30 August 2021

Read the latest preprint version here

Abstract
The accurate prediction of molecular properties such as lipophilicity and aqueous solubility is of great importance in several stages of the drug discovery pipeline. Machine learning methods like graph-based neural networks have shown exceptionally good performance in predicting these properties. In this work we introduce a novel graph neural network architecture composed of two distinct sub-architectures that achieves an improvement in accuracy over its individual parts employing various learning-, and featurization strategies. We argue that combining models with different key aspects might help make graph neural networks deeper while simultaneously increasing their predictive power. Additionally, we want to highlight the need to move beyond comparing single performance metrics to show machine learning model superiority.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Subject: 
Engineering  -   Bioengineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated