Preprint
Article

Modifications for Optimization the Compaction Quality Control in Core Slate Random Filling Embankments for Linear Infrastructures

Submitted:

17 August 2021

Posted:

18 August 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The construction of random fillings from the excavation of medium hardness rocks, with high particle sizes, presents limitations in compaction control. This research applies new control techniques with revised test procedures in the construction of the random fillings core, which constitutes the main part of the embankment, with the bigger volume and provides the geotechnical stability to the infrastructure. The maximum layer thickness researched was 800mm. As there are many types of rocks, this research is applied to metamorphic slates. Quality control has been carried out by applying new research associated with the revision of wheel impression test, topographic settlements and plate bearing test (PBT). A statistical analysis of the core of 16 slate random fillings has been carried out, with a total of 2250 in situ determination of density and moisture content, 75 wheel impression tests, 75 topographic settlement control and 75 PBT. The strong associations found between different tests have allowed to simplify the quality control.
Keywords: 
Random filling; slate rock; core; wheel impression test; topographic settlement test; plate bearing test
Subject: 
Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Altmetrics

Downloads

209

Views

225

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated