Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical Property Sensors

Version 1 : Received: 16 August 2021 / Approved: 17 August 2021 / Online: 17 August 2021 (08:30:46 CEST)

A peer-reviewed article of this Preprint also exists.

Nyabadza, A.; Vázquez, M.; Coyle, S.; Fitzpatrick, B.; Brabazon, D. Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical and Chemical Property Sensors. Appl. Sci. 2021, 11, 8563. Nyabadza, A.; Vázquez, M.; Coyle, S.; Fitzpatrick, B.; Brabazon, D. Review of Materials and Fabrication Methods for Flexible Nano and Micro-Scale Physical and Chemical Property Sensors. Appl. Sci. 2021, 11, 8563.

Abstract

The use of flexible sensors has tripled over the last decade due to the increased demand in various fields including health monitoring, food packaging, electronic skins and soft robotics. Flexible sensors have the ability to be bent and stretched during use and can still maintain their electrical and mechanical properties. This gives them an advantage over rigid sensors that lose their sensitivity when subject to bending. Advancements in 3D printing have enabled the development of tailored flexible sensors. Various additive manufacturing methods are being used to develop these sensors including inkjet printing, aerosol jet printing, fused deposition modelling, direct ink writing, selective laser melting and others. Hydrogels have gained much attention in the literature due to their self-healing and shape transforming. Self-healing enables the sensor to recover from damages such as cracks and cuts incurred during use and this enables the sensor to have a longer operating life and stability. Various polymers are used as substrates on which the sensing conductive material is placed. Polymers including polydimethylsiloxane (PDMS), polyvinyl acetate (PVA), and Kapton are extensively used in flexible sensors. The most widely used nanomaterials in flexible sensors are carbon and silver, however, other nanomaterials such as iron, copper, manganese dioxide and gold are also used to provide controlled levels of conductivity or other functional properties.

Keywords

Flexible sensors; additive manufacturing; 3D printing; self-healing; nanocomposites; advanced manufacturing

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.