Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effect of Non-Academic Parameters on Student’s Performance

Version 1 : Received: 9 August 2021 / Approved: 11 August 2021 / Online: 11 August 2021 (11:23:48 CEST)

How to cite: Lokhande, S.; Bahel, V. Effect of Non-Academic Parameters on Student’s Performance. Preprints 2021, 2021080256. Lokhande, S.; Bahel, V. Effect of Non-Academic Parameters on Student’s Performance. Preprints 2021, 2021080256.


With the exponential growth in today’s technology and its expanding areas of application it has become vital to incorporate it in education. One such application is Knowledge Discovery in Databases (KDD) which is a subset of data mining. KDD deals with extracting useful information and meaningful patterns from the database that were not known before. This study is a detailed application of KDD and focuses on analyzing why a particular set of students performed better than others and what factors influenced the results. The study is conducted on a dataset of 480 students and across 16 different features. The authors implemented 4 major classification techniques namely Logistic Regression, Decision Tree, Random Forest and XGB classifier. Obtaining the key features from the top performing ML algorithms that have a major impact on the performance of the student, the study takes these features as a baseline for further analysis. Further data analysis highlights patterns in the data. The study concludes that there are a lot of non-academic factors that influence the overall performance of a student and should be taken into consideration by universities and other relevant bodies.


Learning Analytics, Education, Educational Data Mining, Pattern Recognition, Data Visualization.


Computer Science and Mathematics, Artificial Intelligence and Machine Learning

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0

Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.