Preprint Review Version 1 Preserved in Portico This version is not peer-reviewed

Overview Of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils

Version 1 : Received: 3 August 2021 / Approved: 4 August 2021 / Online: 4 August 2021 (22:30:31 CEST)

A peer-reviewed article of this Preprint also exists.

Alotaibi, F.; Hijri, M.; St-Arnaud, M. Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Appl. Microbiol. 2021, 1, 329-351. Alotaibi, F.; Hijri, M.; St-Arnaud, M. Overview of Approaches to Improve Rhizoremediation of Petroleum Hydrocarbon-Contaminated Soils. Appl. Microbiol. 2021, 1, 329-351.

Journal reference: Appl. Microbiol. 2021, 1, 23
DOI: 10.3390/applmicrobiol1020023

Abstract

Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern in the word due to intensification of industrial activities. This creates a serious environmental issue, therefore there is a need to find solutions, including application of efficient remediation technologies, or to improve current techniques. Rhizoremediation is a sub-category of the phytoremediation which refers to Phytomanagement that uses plants and their associated microbiota. These green technologies have received a global attention as a cost-effective and possible efficient remediation technique that can be applied to cleanup PHCs-polluted soils. The mechanism of rhizoremediation process is that plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is much complex because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the progress made on rhizoremediation approaches that can overcome the limitations and improve the efficiency of PHCs-contaminated soils. The addressed approaches in this review include: 1) selecting plants with desired characteristics suitable for rhizoremediation, 2) the exploitation and manipulation of plant microbiome by using inoculant containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms, and 3) enhancement of the understanding of how host-plant assembles a beneficial microbiome, and how it functions, under pollutant stress.

Keywords

rhizoremediation; plant growth promoting rhizobacteria; petroleum hydrocarbon-degrading bacteria; salix; contaminated soils; alkanes; polycyclic aromatic hydrocarbons

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.