Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Fabrication of a Hydrogenated Amorphous Silicon detector in 3-D Geometry and Preliminary Test on Planar Prototypes

Version 1 : Received: 23 July 2021 / Approved: 26 July 2021 / Online: 26 July 2021 (09:46:02 CEST)

A peer-reviewed article of this Preprint also exists.

Menichelli, M.; Bizzarri, M.; Boscardin, M.; Caprai, M.; Caricato, A.P.; Cirrone, G.A.P.; Crivellari, M.; Cupparo, I.; Cuttone, G.; Dunand, S.; Fanò, L.; Alì, O.H.; Ionica, M.; Kanxheri, K.; Large, M.; Maruccio, G.; Monteduro, A.G.; Moscatelli, F.; Morozzi, A.; Papi, A.; Passeri, D.; Petasecca, M.; Rizzato, S.; Rossi, A.; Scorzoni, A.; Servoli, L.; Talamonti, C.; Verzellesi, G.; Wyrsch, N. Fabrication of a Hydrogenated Amorphous Silicon Detector in 3-D Geometry and Preliminary Test on Planar Prototypes. Instruments 2021, 5, 32. Menichelli, M.; Bizzarri, M.; Boscardin, M.; Caprai, M.; Caricato, A.P.; Cirrone, G.A.P.; Crivellari, M.; Cupparo, I.; Cuttone, G.; Dunand, S.; Fanò, L.; Alì, O.H.; Ionica, M.; Kanxheri, K.; Large, M.; Maruccio, G.; Monteduro, A.G.; Moscatelli, F.; Morozzi, A.; Papi, A.; Passeri, D.; Petasecca, M.; Rizzato, S.; Rossi, A.; Scorzoni, A.; Servoli, L.; Talamonti, C.; Verzellesi, G.; Wyrsch, N. Fabrication of a Hydrogenated Amorphous Silicon Detector in 3-D Geometry and Preliminary Test on Planar Prototypes. Instruments 2021, 5, 32.

Abstract

Hydrogenated amorphous silicon (a-Si:H) can be produced by plasma-enhanced chemical vapour deposition (PECVD) of SiH4 (Silane) mixed with Hydrogen. The resulting material shows outstanding radiation resistance properties and can be deposited on a wide variety of different substrates. These devices have been used to detect many different kinds of radiation namely: MIPs, x-rays, neutrons and ions as well as low energy protons and alphas. However, MIP detection using planar diodes has always been difficult due to the unsatisfactory S/N ratio arising from a combination of high leakage current, high capacitance and a limited charge collection efficiency (50% at best for a 30 µm planar diode). To overcome these limitations the 3D-SiAm collaboration proposes to use a 3D detector geometry. The use of vertical electrodes allows for a small collection distance to be maintained while conserving a large detector thickness for charge generation. The depletion voltage in this configuration can be kept below 400 V with consequent reduction in the leakage current. In this paper, following a detailed description of the fabrication process, the results of the tests performed on the planar p-i-n structures made with ion implantation of the dopants and with carrier selective contacts will be illustrated.

Keywords

solid-state detectors; position detectors; radiation hard detector; hydrogenated amorphous silicon; 3D detector

Subject

Physical Sciences, Acoustics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.