Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Functionally Graded Plate Fracture by Field Boundary Element

Version 1 : Received: 20 July 2021 / Approved: 21 July 2021 / Online: 21 July 2021 (11:23:51 CEST)

A peer-reviewed article of this Preprint also exists.

Palladino, S.; Esposito, L.; Ferla, P.; Zona, R.; Minutolo, V. Functionally Graded Plate Fracture Analysis Using the Field Boundary Element Method. Appl. Sci. 2021, 11, 8465. Palladino, S.; Esposito, L.; Ferla, P.; Zona, R.; Minutolo, V. Functionally Graded Plate Fracture Analysis Using the Field Boundary Element Method. Appl. Sci. 2021, 11, 8465.

Abstract

The paper describes the Field Boundary Element Method applied to the fracture analysis of a 2D rectangular plate made of Functionally Graded Material to calculate Mode I Stress Intensity Factor. The object of the Field Boundary Element Method is the transversely isotropic plane plate. Its material presents an exponential variation of the elasticity tensor depending on a scalar function of position, i.e., the elastic tensor results from multiplying a scalar function by a constant taken as a reference. Several examples using a parametric representation of the structural response show the suitability of the method that constitutes a sight of Stress Intensity Factor evaluation of Functionally Graded Materials plane plates even in the case of more complex geometries.

Keywords

Functionally Graded Materials; FGM; Field Boundary Element Method; FBEM; Interface; Stress intensity factor; SIF

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.