Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Narrow Precursor Mass Range for DIA-MS Enhances Protein Identification and Quantification

Version 1 : Received: 11 July 2021 / Approved: 13 July 2021 / Online: 13 July 2021 (10:06:11 CEST)

A peer-reviewed article of this Preprint also exists.

Zhang, H.; Bensaddek, D. Narrow Precursor Mass Range for DIA–MS Enhances Protein Identification and Quantification in Arabidopsis. Life 2021, 11, 982. Zhang, H.; Bensaddek, D. Narrow Precursor Mass Range for DIA–MS Enhances Protein Identification and Quantification in Arabidopsis. Life 2021, 11, 982.

Journal reference: Life 2021, 11, 982
DOI: 10.3390/life11090982

Abstract

Data independent acquisition - mass spectrometry (DIA-MS) is becoming widely utilised for robust and accurate quantification of samples in quantitative proteomics. Here, we describe the systematic evaluation of the effects of DIA precursor mass range on total protein identification and quantification. We show that a narrow mass range of precursors (~250 m/z) for DIA-MS enables a higher number of protein identifications. Subsequent application of DIA with narrow precursor range (from 400 to 650 m/z) on Arabidopsis sample with spike-in of known proteins identified 34.7% more proteins than in conventional DIA (cDIA) with a wide precursor range of 400-1200 m/z. When combining several DIA-MS analyses with narrow precursor ranges (i.e., 400-650, 650-900 and 900-1200 m/z), we were able to quantify 10,099 protein groups with a median coefficient of variation of <6%. These findings represent a 59.4% increase in the number of proteins quantified than with cDIA analysis. This is particularly important for low abundance proteins, as exemplified by the 6-protein mix spike-in. In cDIA only 5 out of the 6-protein mix were quantified while our approach allowed accurate quantitation of all six proteins.

Keywords

data-independent acquisition (DIA); mass spectrometry, precursor mass range selection, Arabidopsis; quantitative proteomics.

Subject

LIFE SCIENCES, Biochemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.