Preprint
Article

This version is not peer-reviewed.

Efficacy Analysis and Kinetics of 3-Component Photopolymerization by Visible-LED/Coumarin and Enhanced by Additives of Iodonium Salt and Amine

Submitted:

10 July 2021

Posted:

12 July 2021

You are already at the latest version

Abstract
This article presents, for the first time, the kinetics and the general conversion features of free radical polymerization (FRP) in a 3-component system (A/B/N), with [A] being the initiator, and [B] and [N] are additives, based on the proposed mechanism of Rahal et al. Higher FRP can be achieved by additives [B] and [N], via the dual function of (i) regeneration [A], and (ii) generation of extra radicals (R) via the radicals (S' and S) produced by N.The initiator (coumarin) shows a dual photo-oxidation and photo-reduction character for high efficacy. The FRP conversion efficacy (CE) depends not only on the property of the initiator [A], the additives [B] and [N}, but also the types of monomers. For example, when [A]=CoumC, [A]/NPG is more efficient than [A]/Iod, but revserse trend occurs in some monomers. However, 2-component systems (with CE=0% to 80%) are always less efficient than that of 3-component systems (with CE=70% to 86%, in TMPTA). Specific systems with [A]=coumarins, [B]=Iodonium salt, and N=NPG are analyzed. Analytical formulas for the role of each component concentration, light intensity and coupling rates on the conversion efficacy are derived.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated