Preprint
Article

This version is not peer-reviewed.

On the Loop Homology of a Certain Complex of RNA Structures

A peer-reviewed article of this preprint also exists.

Submitted:

06 July 2021

Posted:

08 July 2021

You are already at the latest version

Abstract
In this paper we establish a topological framework of τ-structures to quantify the evolutionary transitions between two RNA sequence-structure pairs. τ-structures developed here consist of a pair of RNA secondary structures together with a non-crossing partial matching between the two backbones. The loop complex of a τ-structure captures the intersections of loops in both secondary structures. We compute the loop homology of τ-structures. We show that only the zeroth, first and second homology groups are free. In particular, we prove that the rank of the second homology group equals the number γ of certain arc-components in a τ-structure, and the rank of the first homology is given by γ−χ+1, where χ is the Euler characteristic of the loop complex.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated