Preprint
Article

Combination of Using Pairwise Comparisons and Composite Reference Series: A New Approach in the Homogenization of Climatic Time Series

This version is not peer-reviewed.

Submitted:

30 June 2021

Posted:

30 June 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The removal of non-climatic biases, so-called inhomogeneities, from long climatic records needs sophistically developed statistical methods. One principle is that usually the differences between a candidate series and its neighbour series are analysed instead of directly the candidate series, in order to neutralize the possible impacts of regionally common natural climate variation on the detection of inhomogeneities. In most homogenization methods, two main kinds of time series comparisons are applied, i.e. composite reference series or pairwise comparisons. In composite reference series the inhomogeneities of neighbour series are attenuated by averaging the individual series, and the accuracy of homogenization can be improved by the iterative improvement of composite reference series. By contrast, pairwise comparisons have the advantage that coincidental inhomogeneities affecting several station series in a similar way can be identified with higher certainty than with composite reference series. In addition, homogenization with pairwise comparisons tends to facilitate the most accurate regional trend estimations. A new time series comparison method is presented here, which combines the use of pairwise comparisons and composite reference series in a way that their advantages are unified. This time series comparison method is embedded into the ACMANT homogenization method, and tested in large, commonly available monthly temperature test datasets.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

189

Views

224

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated