Domonkos, P. Combination of Using Pairwise Comparisons and Composite Reference Series: A New Approach in the Homogenization of Climatic Time Series with ACMANT. Atmosphere2021, 12, 1134.
Domonkos, P. Combination of Using Pairwise Comparisons and Composite Reference Series: A New Approach in the Homogenization of Climatic Time Series with ACMANT. Atmosphere 2021, 12, 1134.
Domonkos, P. Combination of Using Pairwise Comparisons and Composite Reference Series: A New Approach in the Homogenization of Climatic Time Series with ACMANT. Atmosphere2021, 12, 1134.
Domonkos, P. Combination of Using Pairwise Comparisons and Composite Reference Series: A New Approach in the Homogenization of Climatic Time Series with ACMANT. Atmosphere 2021, 12, 1134.
Abstract
The removal of non-climatic biases, so-called inhomogeneities, from long climatic records needs sophistically developed statistical methods. One principle is that usually the differences between a candidate series and its neighbour series are analysed instead of directly the candidate series, in order to neutralize the possible impacts of regionally common natural climate variation on the detection of inhomogeneities. In most homogenization methods, two main kinds of time series comparisons are applied, i.e. composite reference series or pairwise comparisons. In composite reference series the inhomogeneities of neighbour series are attenuated by averaging the individual series, and the accuracy of homogenization can be improved by the iterative improvement of composite reference series. By contrast, pairwise comparisons have the advantage that coincidental inhomogeneities affecting several station series in a similar way can be identified with higher certainty than with composite reference series. In addition, homogenization with pairwise comparisons tends to facilitate the most accurate regional trend estimations. A new time series comparison method is presented here, which combines the use of pairwise comparisons and composite reference series in a way that their advantages are unified. This time series comparison method is embedded into the ACMANT homogenization method, and tested in large, commonly available monthly temperature test datasets.
Keywords
time series; homogenization; ACMANT; observed data; data accuracy
Subject
Environmental and Earth Sciences, Atmospheric Science and Meteorology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.