Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

High Vegetables Intake and Response to COPD Rehabilitation. The Role of Oxidative Stress, Inflammation and Dna Damage.

Version 1 : Received: 22 June 2021 / Approved: 23 June 2021 / Online: 23 June 2021 (10:08:20 CEST)

A peer-reviewed article of this Preprint also exists.

Ilari, S.; Vitiello, L.; Russo, P.; Proietti, S.; Milić, M.; Muscoli, C.; Cardaci, V.; Tomino, C.; Bonassi, G.; Bonassi, S. Daily Vegetables Intake and Response to COPD Rehabilitation. The Role of Oxidative Stress, Inflammation and DNA Damage. Nutrients 2021, 13, 2787. Ilari, S.; Vitiello, L.; Russo, P.; Proietti, S.; Milić, M.; Muscoli, C.; Cardaci, V.; Tomino, C.; Bonassi, G.; Bonassi, S. Daily Vegetables Intake and Response to COPD Rehabilitation. The Role of Oxidative Stress, Inflammation and DNA Damage. Nutrients 2021, 13, 2787.

Abstract

Chronic obstructive pulmonary disease (COPD) is a respiratory disease associated with airways inflammation and lung parenchyma fibrosis. The primary goals of COPD treatment are to re-duce symptoms and risk of exacerbations, therefore pulmonary rehabilitation is considered the key component of managing COPD patients. Oxidative airway damage, inflammation and re-duction of endogenous antioxidant enzymes are known to play a crucial role in the pathogenesis of COPD. Natural antioxidants have also recently been considered as they play an important role in metabolism, DNA repair and fighting the effects of oxidative stress. In this paper we evaluated the response of 105 elderly COPD patients to pulmonary rehabilitation (PR), based on high or low vegetable consumption, by analyzing clinical parameters and biological measure-ments at baseline and after completion of the three weeks PR. We found that high vegetable in-take in normal diet, without any specific intervention, can increase the probability to success-fully respond to rehabilitation (65.4% of responders ate vegetables daily vs. 40.0% of Non-Responders, p=0.033). Three weeks of pulmonary rehabilitation are probably too short to reveal a reduction of the oxidative stress and DNA damage, but are enough to show an im-provement in the patient's inflammatory state.

Keywords

Chronic obstructive pulmonary disease (COPD); Pulmonary Rehabilitation; Vegetables; DNA damage; Genomic Instability; Oxidative stress; Inflammation.

Subject

Biology and Life Sciences, Anatomy and Physiology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.