Preprint
Article

An Acoustic Spheroid-on-Chip Platform for Long-Term Culturing of 3D Cell Aggregates

Submitted:

14 June 2021

Posted:

18 June 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Microfluidic lab-on-chip devices are widely being developed for chemical and biological studies. One of the most commonly used types of these chips is perfusion microwells for culturing multicellular spheroids. The main challenge in such systems is the formation of substantial necrotic and hypoxic zones within the cultured spheroids. Herein, we propose a novel acoustofluidic integrated platform to tackle this bottleneck problem. We show that such an approach enhances cell viability and shrinks necrotic and hypoxic zones in these spheroid-on-a-chip platforms without the need to increase the flow rate, leading to a significant reduction in costly reagents' consumption. Proof-of-concept, designing procedures, and finite element numerical simulation are discussed in details. Also, the effects of acoustic and hydrodynamic parameters on the cultured cells are investigated. The results show that by increasing acoustic boundary displacement amplitude (d0), the spheroid’s proliferating zone enlarges greatly. Moreover, it is shown that by implementing d0=0.5 nm, the required flow rate to maintain the necrotic zone below 13% will be decreased 12 times compared to non-acoustic chips.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

364

Views

451

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated