Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Contrasting Host-parasite Population Structure and Role of Host Specificity: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika

Version 1 : Received: 14 June 2021 / Approved: 15 June 2021 / Online: 15 June 2021 (11:23:33 CEST)

A peer-reviewed article of this Preprint also exists.

Kmentová, N.; Hahn, C.; Koblmüller, S.; Zimmermann, H.; Vorel, J.; Artois, T.; Gelnar, M.; Vanhove, M.P.M. Contrasting Host-Parasite Population Structure: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika. Biology 2021, 10, 797. Kmentová, N.; Hahn, C.; Koblmüller, S.; Zimmermann, H.; Vorel, J.; Artois, T.; Gelnar, M.; Vanhove, M.P.M. Contrasting Host-Parasite Population Structure: Morphology and Mitogenomics of a Parasitic Flatworm on Pelagic Deepwater Cichlid Fishes from Lake Tanganyika. Biology 2021, 10, 797.

Journal reference: Biology 2021, 10, 797
DOI: 10.3390/biology10080797

Abstract

Little phylogeographic structure is presumed for highly mobile species in pelagic zones. Lake Tanganyika is a unique ecosystem with a speciose and largely endemic fauna famous for its remarkable evolutionary history. In bathybatine cichlid fishes, the pattern of lake-wide population differentiation differs among species. We tested the magnifying glass hypothesis for their parasitic flatworm Cichlidogyrus casuarinus. Lake-wide population structure of C. casuarinus ex Hemibates stenosoma was assessed based on a portion of the mtCOI gene combined with morphological characterisation. Additionally, intraspecific mitogenomic variation among 80 individuals within one spatially constrained parasite metapopulation sample was assessed using shotgun NGS. While no clear geographic genetic structure was detected in parasites, both geographic and host-related phenotypic variation was apparent. The incongruence with the genetic north-south gradient observed in the host may be explained by the broad host range of this flatworm as some of its other host species previously showed no lake-wide restriction of gene flow. Our results are consistent with host driven morphological variation without genetic differentiation of the parasite, and highlight the importance of integratively approaching parasites` potential as “tags” for their hosts. We present the first parasite mitogenome from Lake Tanganyika and propose a methodological framework for studying intraspecific mitogenomic variation of dactylogyrid monogeneans.

Keywords

Monogenea; Bathybatini; cox1; PoolSeq

Subject

BIOLOGY, Anatomy & Morphology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.

We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.