Preprint
Article

This version is not peer-reviewed.

A Semi-Deterministic Random Walk with Resetting

A peer-reviewed article of this preprint also exists.

Submitted:

04 June 2021

Posted:

07 June 2021

You are already at the latest version

Abstract
We consider a discrete-time random walk (xt) which at random times is reset to the starting position and performs a deterministic motion between them. We show that the quantity Prxt+1=n+1|xt=n,n→∞ determines if the system is averse, neutral or inclined towards resetting. It also classifies the stationary distribution. Double barrier probabilities, first passage times and the distribution of the escape time from intervals are determined.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated