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Abstract: We consider a discrete-time random walk (xt) which at random times is reset to the1

starting position and performs a deterministic motion between them. We show that the quantity2

Pr
(

xt+1 = n + 1|xt = n
)

, n→ ∞ determines if the system is averse, neutral or inclined towards3

resetting. It also classifies the stationary distribution. Double barrier probabilities, first passage4

times and the distribution of the escape time from intervals are determined.5

Keywords: Random walk with resetting, Escape probabilities, Exit times6

1. Preliminaries7

In a previous paper [1] we introduced the Sisyphus random walk as an infinite Markov8

chain that moves on the space state N = {0, 1, 2, . . . , ∞} and that at every step can either9

jump one unit rightward, or return to the initial state, from where it is restarted. The10

system was named after the king of Ephyra, Sisyphus, who was condemned to lift a11

heavy stone in an endless cycle.12

Here we generalize the above idea and consider a random walk on the integers13

(xt)t∈N whose dynamics alternates deterministic linear motion with resets which drive14

the system to the starting point at the random times (tn)n≥1. At every clock tick the15

position of the random walker is such that |xt| either increases one unit, or returns to16

the ground state, whereupon the evolution continues. Such resetting occurs through an17

independent mechanism superimposed to the original semi-deterministic evolution.18

Once (xt) is reset to the origin at t1, it begins the evolution anew from scratch, which is19

deterministic between resets.20

Using translational invariance we can suppose that x0 = 0 with no loss of generality.21

Concretely, starting from x0 = 0, three possibilities open for the future position x1: the22

system may remain at x1 = 0 provided a reset occurs at t = 1; otherwise, it goes one unit23

to the right with probability ρ or to the left with probability ρ̄ = 1− ρ. In addition, if the24

system has wandered into the positives so at a certain time t ≥ 0 is xt > 0 (respectively25

xt < 0) then at time t + 1, it may either be reset to the origin xt+1 = 0 with arbitrary26

probability or else increase (respectively, decrease) one unit to xt+1 = xt + 1 (respectively27

xt+1 = xt − 1).28

Such apparent simplicity is misleading as this simple evolution law can exhibit29

a surprisingly complex and rich behavior. Indeed, at each site we allow arbitrary30

probabilities for the random walk to reset to the origin and, additionally, the possibility31

to move both in the positive and negative integers. The only restriction in this general32

dynamics is the requirement that (xt)t∈N be a Markov chain. The resulting system is33

a natural, non trivial generalization of that of [1], which is recovered when the reset34

probability is independent of the location and when ρ = 1.35

In a different setting such system may be used as an idealized model of the random36

dynamics of a “mobile" in a trap, say, who is trying to climb stepwise a ladder or wall37

given that at every step there is a common probability of slipping to the bottom, resulting38
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in the need to restart again. Here, the natural question would be the determination of39

the location probability and expected time to escape the trap.40

A related mechanism–Sisyphus cooling– was proposed by Claude Cohen-Tannoudji41

in certain optical contexts to the effect that an atom may climb up a potential hill, till42

suddenly it is returned to some ground state where it can restart anew. The hallmark43

of such systems is the possibility to display “back-to-square-one” behavior, a feature44

common in real life systems. Indeed, the study of stochastic processes subject to random45

resets is a problem that has attracted a great interest in recent years after the seminal46

work of Manrubia and Zanette [2] and Evans and Majumadar [3]. Presently the dynamics47

of systems with resets is being subjected to intense study, see the recent review [4]. Other48

mechanisms for random walks that are suddenly refreshed to the starting position are49

considered in [5,6,35]. Brownian motion with resets is considered in [3,8] while in [9] the50

propagator of Brownian motion under time-dependent resetting is obtained (see also [18]51

for further elaboration). In [10] these ideas are applied to the case of a compound Poisson52

process with positive jumps and constant drift. Further elaboration appears in [11]. Reset53

mechanisms have been also thoroughly applied to search strategies in mathematical and54

physical contexts as well as to behavioral ecology, see [12–18]. Surprisingly, strategies55

that incorporate reset to pure search are advantageous in certain contexts in ecology and56

biophysics and molecular dynamics, [19–22]. A generañization of the the Kardar-Parisi-57

Zhang (KPZ) equation that describes fluctuating interfaces and polymers under resetting58

is covered in [23]. Dynamical systems with resets have also been used as proxies of the59

classical integrate-and-fire models of neuron dynamics, see [24,25]. In the context of60

Lévy flights with resetting see the interesting papers [26,27]. For other applications see61

also the recent papers [28–35]62

As commented the main aim of this paper is to study the main features of the63

semi-deterministic random walk with resets (xt), t = 0, 1, . . . ∞. The evolution rules for64

such random walk are described in section 2. We then study the propensity towards65

resetting of the system. According to this important property we divide systems as66

reset averse, neutral or reset-inclined, and characterize them in terms of the transition67

probabilities and behavior of Pr
(

xt+1 = n + 1|xt = n
)

, n → ∞. In section 3 we study68

the stationary distribution that the system approaches for large time. Section 4 considers69

first-passage problems and, in particular, two-sided exit probabilities; concretely, given70

levels a, b ∈ N, we study the probabiity that x reaches a > 0 before having reached71

−bcand distributions of the escape time. First passage times (FPT) play also a key role in72

statistical decision models, or to devise optimal strategies for seeking information, the73

rate at which a Brownian particle under the influence of a metastable potential, escapes74

from a potential well is also a critical subject in the study of polymers. The so called75

Kramers problem [36], is a classical subject in statistical physics.76

Under the simplest election ρ = 1 and qn := Pr
(
xt+1 = n+ 1|xt = n

)
= q1 constant77

we have that the distribution of the FPT to level k ≥ 1 is that of the number of trials required78

in an unfair coin-toss to obtain k consecutive successes, a classical problem in probability.79

Even with k = 2 the distribution of such problem is not trivial.80

2. The Model81

Here we define the model at hand. Let x0 := 0 be the initis al position. The evolution
rules for the random walk (xt), t = 0, 1, . . . ∞ are as follows. We suppose that, if for any
t ≥ 0 is xt = 0 then the random walk satisfies

Pr
(
xt+1 = n|xt = 0

)
= q̄1δn0 + q1ρδn1 + q1ρ̄δn,−1, j ∈ Z (1)

where we denote q1 = Pr(xt+1 6= 0|xt = 0) ∈ (0, 1) the probability that, starting form82

zero, the system moves away from the origin at the next instant and ρ := Pr(xt+1 =83

1|xt = 0, xt+1 6= 0) ∈ [0, 1] the probability that if the system abandons the originat time84
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Figure 1. A typical showing sample paths of the process where t1 = 5, t2 = 7, . . . and x1 = x6 = 1

t it goes to position xt+1 = 1. To ease notation for any value p we set p̄ := 1− p ,85

q̄1 := 1− q1. Besides δnk is Kronecker delta.86

Further, we suppose that the random walk (xt), t = 0, 1, . . . ∞ is a Markov chain87

where if xt ≡ n 6= 0 the only allowed transitions are either to site n + sign (n) if no reset88

occurs, which happens with probability qn+1; or else to {0}, when a reset occurs, with89

probability 1− qn+1. Here the sequence (qn) satisfies that 0 ≤ qn ≤ 1 for all n. It follows90

that the chain has transition rules91

Pr
(

xt+1 = m|xt = n
)
=

{
qn+1, m = n + 1
1− qn+1, m = 0

, t ≥ n > 0 (2)

Pr
(

xt+1 = m|xt = n
)
=

{
q|n|+1, m = n− 1
1− q|n|+1, m = 0

, t ≥ −n > 0 (3)

Pr
(

xt+1 = m|xt = 0
)
=


ρq1, m = 1
ρ̄q1, m = −1
1− q1, m = 0

(4)

and 0 otherwise. We also suppose that the infinite product with general term qn satisfies

lim
n→∞

n

∏
j=1

qj = 0; alternatively
∞

∑
j=1

(1− qj) = ∞ (5)

This mild requirement does not imply that limn→∞ qn = 0 (see (12) below).92

The model considered in [1] is recovered assuming ρ = 1 and that the jump-93

probability is constant: q1 = q2 = . . . qn = . . . .94

2.0.1. Reset times95

We denote as t1 the random time at which the first reset happens. Here we consider
its distribution probability pn := Pr(t1 = n), n = 1, . . . , ∞ and other peculiarities of the
Sisyphus random walk. Similarly we denote as tk the random time at which the k−th

reset happens. To this end note that for n = 1, 2, . . . the reset takes place at time n if in
all previous times no reset has occurred–and so |x1| = 1, . . . , |xn−1| = n− 1 and xn = 0.
Thus we have transitions {0} 7→ {1} · · · 7→ {n − 1} 7→ {0} and the correspondnig
probability

pn := Pr(t1 = n) = q1 . . . qn−1q̄n (6)

which is proper random variable, in view of (5).96

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2021                   



Version June 4, 2021 submitted to Entropy 4 of 13

The following representation clarifies the meaning and different roles of (pn) and
(qn)

pn := Pr(t1 = n) = Pr(tt = n) := Pr
(

xt+n = 0, xt+j 6= 0, 0 < j < n|xt = 0
)

(7)

and
q̄n = Pr

(
xt+n = 0|xt = 0, xt+j 6= 0, 0 < j < n

)
(8)

We relate both probabilities. We introduce recursively a sequence (βn) via β0 ≡ 1
and βn := q1 . . . qn, n = 1, 2, . . . . Note then that

pn = q1 . . . qn−1q̄n = βn−1 − βn

This can be inverted as

βn = pn+1 + pn+2 + · · · = F̄t1(n) = 1− Ft1(n) (9)

whereFt1 ≡ F is the cumulative distribution function (cdf) of t1. Recalling that βn :=
q1 . . . qn, we finally have that (6) can be inverted as

qn =
F̄(n)

F̄(n− 1)
, n = 1, 2 . . . (10)

2.1. Reset averse and reset-inclined systems97

One of the most defining traits in the random walk (2)-(4) is what we call propensity
towards resetting, a measure of how likely is that the resetting mechanism is triggered as
the time from the last reset increases. We say that a system is inclined towards resetting
if such probability grows as the distance to the origin increases: q̄n < q̄n+1, for all
n. Intuitively, for a reset-inclined system, the random walk becomes more anxious to
return to the origin the greatest the time since the last visit or, alternatively, the farthest
off it is. If this probability decreases (respectively, remains unchanged) we say that
the system is reset-averse or reset-neutral. Reset-neutral chains correspond to having
qn = qn−1 ≡ q1 ∈ (0, 1) for all n. This is the choice considered in [1]. In this case

Pr(t1 = n) = qn−1
1 (1− q1), F(n) = 1− qn

1 (11)

Actually, we are interested in this property for large n. We say that a system is ultimately
averse, neutral or, respectively, inclined towards resetting if as the time from the last reset
tends to infinity the reset probability (qn) satisfies

lim
n→∞

qn := lim
n→∞

Pr
(

xt+n 6= 0|xt = 0, xt+j 6= 0, 0 < j < n
)
=


0, (inclined)
q∞ ∈ (0, 1) (neutral)
1, (averse)

(12)
The election qn = q1/n, corresponds to an ultimately reset-inclined system. Here

we have limn→∞ qn = 0 and

pn =
qn−1

1
(n− 1)!

−
qn

1
n!

, F̄(n) =
qn

1
n!

, n = 1, 2 . . . (13)

A simple calculation yields < t1 >= eq1 ≤ e, which is bounded respect the parameter q1.98

Finally, the choice qn = n/(n + 1) corresponds to a reset-averse system. Here the
chain has power law decay tails:

pn =
1

n(n + 1)
and F̄(n) =

1
n + 1

(14)
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The elections (13) and (14) are natural modifications of (11) and reflect that the99

probability to commit an error that sends the walker to square one diminishes (increases)100

with every step. This may be put down to a capability to learn or, in contrast, to forget or101

grow tired with the distance to the origin. (14) corresponds to qn = qn−1
(
1+ 1

n2−1

)
−and102

hence to learning– while if qn = qn−1(1− 1
n ) Zipf law (13): qn = q1/n, follows.103

(14) may also account for uncertainty in the relevant parameters. Suppose we
accept the basic model (11) to hold but are ignorant of the value of parameter q1. Besides
we accept that all values for q1 are equally likely; in this situation parameter q1 should be
assumed to have Uniform (0, 1) distribution. Bayes theorem implies that the distribution
at posteriori of t1 must be given by (14):

Pr(t1 = n) =
∫ 1

0
Pr(t1 = n|q1)dq1 =

∫ 1

0
dq1qn−1

1 (1− q1) =
1

n(n + 1)
(15)

We next show that the above behavior is ubiquitous so the reset propensity is directly
related with the tail’s behavior. Indeed, since the sequence F̄(n) is strictly monotone and
F̄(n) ↓ 0 as n→ ∞ the Stolz-Cesáro theorem gives

q∞ := lim
n→∞

qn = lim
n→∞

F̄(n)
F̄(n− 1)

= lim
n→∞

pn

pn−1
(16)

Requiring q∞ ≡ e−λ ∈ (0, 1) we obtain that asymptotically (pn) must grow as

pn ≈ ce−λn, c, λ > 0, n→ ∞ (17)

which is the paradigmatic example of ultimately neutral systems. Note that such (pn)
has medium tails. By contrast tails of the form

pn ≈ ce−λnα
, n→ ∞ where c > 0, λ > 0, α > 0 (18)

give q∞ = 1 if 0 < α < 1 and q∞ = 0 if α > 1. The exponential case α = 1, i.e. the104

geometric distribution, marks the crossover between these cases.105

Note that slowly, power law decaying sequences as

pn ≈ c/nα, c > 0, α > 1, n→ ∞ (19)

also correspond to ultimately reset-averse systems. Thus heavy tails of the sequence106

(pn) correspond to reset averse systems while the opposite holds with medium and light107

(super-exponential) tails like those in (11) and (18).108

More complicated tails can be handled noting the behavior of ultimately averse,
neutral or inclined reset systems under sums and products. We use q∞ := ϑ to denote
that limn→∞ qn ∈ (0, 1) (thus limn→∞ qn = 0, ϑ or 1). Hence,with obvious notation the
sums and product rules for q(1)∞ , q(2)∞ , say, read

0 + 0 = 0; 0 + ϑ = ϑ; 0 + 1 = 1; ϑ + ϑ = ϑ; ϑ + 1 = 1 + 1 = 1;

0 · 0 = 0 · ϑ = 0 · 1 = 0; ϑ · ϑ = ϑ · 1 = ϑ; 1 · 1 = 1

where the symbol ϑ · ϑ = ϑ is used to mean that if

lim
n→∞

q(1)n ∈ (0, 1), lim
n→∞

q(2)n ∈ (0, 1), then lim
n→∞

q(1)n q(2)n ∈ (0, 1)

As an example, for 0 < c < 1 consider the hybrid system

pn =
nν̄ + 1

n(n + 1)
νn−1 = O(

e−λn

n
)
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where ν := e−λ, λ > 0. Here pn ≡ p(1)n p(2)n and tails display mixed exponential and
power-law decay. Hence q∞ = q(1)∞ · q

(2)
∞ = ϑ · 1 = ϑ corresponding to an ultimately

neutral system. This corroborated by exact evaluation of qn. Equation (10) yields that

qn = nν/(n + 1) and lim
n→∞

qn = ν ∈ (0, 1)

Table 1: The table summarizes the propensity to resetting in terms of the deacy of
pn := Pr(t1 = n) and the equilibrium distribution. In all cases λ > 0.

pn→∞ Ft1(n) qn→∞ Propensity Tails Et1 πn→∞

O(e−λnα
), α > 1 O(e−λnα

) 0 inclined Super-exp. < ∞ O(e−λnα
)

O(( e−λ

n )n, O(( e−λ

n )n, 0 inclined Super-exp. < ∞ O(( e−λ

n )n

O(e−λn) O(e−λn) ∈ (0, 1) neutral exp. < ∞ O(e−λn)

O(e−λnα
), 0 < α < 1 O(e−λnα

), 0 < α < 1 1 averse Sub-exp. < ∞ O(e−λnα
)

O(1/nα), α > 2 O(1/nα−1), α > 2 1 averse Power-law < ∞ O(n1−α)

O(1/nα), 1 < α ≤ 2 O(1/nα−1), 1 < α ≤ 2 1 averse Power-law = ∞ —-

109

3. Equilibrium distribution110

Here we consider the large time or equilibrium distribution of the random walk.
Call x∞ ≡ limt→∞ xt the limit of the process and πn := Pr(x∞ = n), n ∈ Z its distribution.
When it exists (πn) has the remarkable porperty that it is an equilibrium state, in the
sense that it has initially this distribution then it will not abandon it. (πm) satisfies the
system

∑
n∈Z

gnmπn = πm, m ∈ Z (20)

where (gnm) is the transition probability matrix defined in (3):

gnm := Pr
(

xt+1 = m|xt = n
)

(21)

To handle this we divide the matrix in upper and lower parts, connected only by the
column and rows with index 0, i.e.

G =

(
G− 0
0 G+

)
(22)

where G− is essentially obtained from G+ by reflection and G+,nm, n, m = 0, ∞ reads
(including the 0− column)

G+ =


q̄1 ρq1 0 0 0 . . .
q̄2 0 q2 0 0 . . .
q̄3 0 0 q3 0 . . .
. . . . . .
q̄n 0 . . . 0 0 qn

 (23)

By insertion we find
π1 = ρq1π0, π−1 = ρ̄q1π0
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along with the recursive system

πn+1 = qn+1πn, n ≥ 1 and πn−1 = q|n|−1πn, n ≤ −1 (24)

Solving recursively we find

πn = ρπ0q1q2 . . . qn = π0ρF̄(n) and π−n = π0ρ̄F̄(n), n ≥ 1 (25)

Normalization gives 1/π0 = ∑∞
n=0 npn ≡< t1 >≡ µ. which requires < t1 >≡ µ < ∞, i.e.

(pn) must decay at least as pn ≈ 1/nr, r > 2. In this case, letting ρnερ1n>0 + ρ̄1n<0 + δn0,
the stationary distribution is

πn = (ρn/µ)F̄(|n|), n = −∞, . . . , ∞ (26)

The probability that the random walk has drifted to site n for large time decreases as111

F̄(n) does, see Table (1). Note that in no case our Markov process satisfies the “detailed112

balance” condition for the stationary distribution: πmgnm 6= πngmn. This was to be113

expected since detailed balance guarantees time-reversibility, a trait that the system at114

hand clearly does not exhibit.115

For the cases (11), (13) we have

πn = ρn(1− q1)q
|n|
1 and πn = ρneq1

q|n|1
|n|! , n = −∞, . . . 0, . . . , ∞ (27)

Finally, for system (14) there is neither equilibrium nor stationary distribution,116

indicating that the chain spreads out far from the origin and it does not settle to an117

equilibrium.118

4. Escape probabilities119

In a classical study W. Feller [37] showed that most recurrent properties of general
diffusion processes can be codified in terms of two of the functions that define escape
probabilities from an interval (c, d), c < d. Given that the process has started from a
general x0, c < x0 < d. Feller considers the “scale and speed functions”, defined as

s(x0) = Pr(τd > τc) and m(x0) ≡< τc,d > (28)

and shows that they solve certain differential equations (see [37] for an overview).120

Here, for any a ∈ R we introduce the "hitting time" τa = inf{t > 0 : xt = a} which121

represents the lapse of time necessary to travel from the starting value to a; besides122

τc,d := min{τc, τd} is the escape time from the interval (c, d).123

We perform a similar study here and determine, for given levels a, b ∈ N,−b <124

0 < a, the probability that the random walk (xt) reaches a > 0 before having reached125

−b. Note that by translational invariance the case when (x) starts from general x0 is126

immediately reduced to that with x0 = 0.127

We start noting that when resets are switched off the only source of randomness128

lies in the first displacement of the random walk away from x = 0; hence, xn = n for129

all n if x1 = 1. In this case τa,b–the minimum time to hit either a > 0 or −b < 0- is a130

binary random variable that takes values a and b with probabilities ρ and ρ̄. Besides131

Pr0(τa < τb) = ρ.132

Obviously τa,b will increase when a reset mechanism is introduced; it is tempting133

to think that however resets do not affect the escape probabilities, namely Pr0(τa < τb) = ρ134

still holds. However this is not correct!. To dispel such misinterpretation note tath resets135

introduce a bias which favors the closest barrier against the farthest one. This is similar136

to the classical waiting time paradox where cycles with very large inter-reset times137

have a greater probability than smaller ones. Intuitively, if restarts occur very often the138

possibility to reach the farthest barrier diminishes. We now determine this probability.139

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 June 2021                   



Version June 4, 2021 submitted to Entropy 8 of 13

A very simple argument goes as follows. Consider the probability `a that the
random walk (x) reaches a > 0 before having reached −b when we know that (xt) hits a
or −b in the given cycle. The event that escape occurs at a given cycle, the first, say, is

E := {x1 > 0, t1 > a} ∪ {x1 < 0, t1 > b} ≡ E1 ∪ E2 (29)

with probability
κ ≡ Pr(E) = ρF̄(a) + ρ̄F̄(b) (30)

Hence the probability that escape occurs via the upper barrier is can be evaluated
as the probability of E1 conditional on E having happened.

`a = Pr( escape via a|E) = Pr(E1|E1 ∪ E2) =
ρF̄(a)

κ
(31)

The reasoning when escape occurs at a general given cycle is a bit more involved140

but does not change the result.141

Denote `0
a ≡ ρ the corresponding probability when no resets are introduced. Then

`a ≥ `0
a ⇔ F̄(b) ≤ F̄(a)⇔ b ≥ a (32)

which means that resets increase the probability to hit first the closest barrier, as expected.142

Further, when a = b (31) yields `a = `0
a.143

We thus have for the neutral chain (11), the reset-averse chain (13) and the reset-
inclined chain (14), respectively

`a =


ρ
(

ρ + ρ̄qb−a
1

)−1

ρb!
(

b!ρ + ρ̄a!qb−a
1

)−1

(
1 + ρ̄(a+1)

ρ(b+1)

)−1

=


ρ
(

ρ + ρ̄qd
1

)−1

ρ
(

ρ + ρ̄qd
1a!/(a + d)!

)−1

(
1 + ρ̄(a+1)

ρ(a+d+1)

)−1

(33)

In the second equality we introduce d := b− a, which measures the departure from144

symmetry of the problem and suppose b ≥ a for ease of notation. Figure 2 plots Pr(A)145

versus d.146

5. Escape times147

Here we consider the distribution of τa,b ≡ min{τb, τa} for general levels a, b and a148

general model (2)-(4).149

5.1. Symmetry properties of First passage times150

Denote for a moment as τ
ρ
a,b the FPT to either a or −b when Pr(xt+1 = 1|xt =151

0, xt+1 6= 0) = ρ. This quantity τa,b has a nice interpretation. Suppose the model (11)152

holds. Say a success has been scored every time a reset does not happen. Then τ1
n,n = τ1

n is the153

time that takes to get n ≥ 1 successes in a row provided the probability of individual154

success is q1 a classical problem in probability. Obviously, if n = 1 then τ1
n–the first time155

to reach level 1– must have a geometric distribution with parameter q1. However, even156

with n = 2 this problem has no easy solution, not even for the mean times.157

We note the interesting relation between the asymmetric and symmetric cases.158

1. If la is defined in in (31) and la + lb = 1 and EX ≡< X > indicates the expected
value of the random variable X we have

Eτ
ρ
a,b = laEτ

ρ
a,a + lbEτ

ρ
b,b (34)
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2. τ
ρ
a,a is independent of ρ. Besides the distributions in the symmetric case and one

sided case are equal, namely, for any b

τ
ρ
a,a = τ1

a,b = τ1
a,∞ ≡ τ1

a ; τ
ρ
a,∞ = τ

ρ
a (35)

Indeed when the interval is symmetric the escape time will not be influenced by159

whether resets favor upward or downward flights; hence (35) must hold. For the160

sake of comparison we see that (38) overestimates the time that takes to reach the161

boundaries.162

A first approximation is given by < τa,b >≈< N > × < t1 > where N is the163

number of cycles until escape. To warm up we consider first the distribution of N.164

By independence of cycles N has a geometric distribution with exit parameter
κ := Pr(E) where E, κ are defined in (29), (30). Thus we have N ∼Geom (κ):

Pr(N = n) = κ(1− κ)n−1, n = 1, 2 . . . and (36)

< N >= (1/κ), < τa,b >≈< N > × < t1 >=
∑∞

n=1 npn

ρF̄(a) + ρ̄F̄(b)
(37)

In particular for the symmetric case a = b

< τa,b >≈
( ∞

∑
n=1

npn

)
/(

∞

∑
n=a+1

pn) ≥ a +
( a

∑
n=1

npn

)
/(

∞

∑
n=a+1

pn) (38)

Clearly this approximation is only reasonable when the system needs a large number of165

cycles to exit the interval, i.e. κ ≈ 0.166

5.2. Mean exit time167

To study the exact time to hit a or b we note that depending of what happens at the168

the first reset t1 there are five excluding and exhausting possibilities. These scenarios are169

• (S1) x1 > 0 and t1 > a170

• (S2) x1 < 0 and t1 > b.171

• (S3) x1 > 0 and t1 ≤ a.172

• (S4) corresponds to having x1 < 0 and t1 ≤ b.173

• (S5) corresponds to x1 = 0.174

Under scenario (S1) (xt) hits a before it hits b with τa,b = a. Under scenario (S2)
(xt) hits b before a and τa,b = b. Scenarios (S3) to (S5) refresh (xt) to the origin and the
"race" starts again from scratch, so τa,b = t1 + τ′a,b where τ′a,b is the time that remains
until exit once the new cycle starts. This implies that

τa,b =


a if x1 > 0, t1 > a
b if x1 < 0, t1 > b
t1 + τ′a,b if 2 ≤ t1 ≤ a, x1 > 0 or 2 ≤ t1 ≤ b, x1 < 0 or t1 = 1

(39)

and Eτa,b = aρF̄(a) + bρ̄F̄(b)+

ρE(t11t1≤a) + ρ̄E(t11t1≤b) + (ρ̄F(b) + ρF(a))Eτ′a,b

Thus we finally get

Eτa,b =
ρ
(
aF̄(a) +E(t11t1≤a)

)
+ ρ̄
(
bF̄(b) +E((t11t1≤b)

)
ρ̄F̄(b) + ρF̄(a)

(40)
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If b→ ∞ then bF̄(b)→ 0 and we recover the mean hitting time to level a as

Eτa = a +
1

ρF̄(a)
(
E(t1)− ρE

(
t11t1>a

))
(41)

Particularly interesting is the symmetric case a = b. Here175

Eτ
ρ
a,a = Eτ1

a = a +
E(t11t1≤a)

F̄(a)
= a +

( a

∑
n=1

npn

)
/(

∞

∑
n=a+1

pn) (42)

Note how this implies (34).176

5.3. Distribution of the exit time177

Finally we consider the distribution of τa,b. We evaluate its generating function

G(z) =
∞

∑
n=1

zn Pr(τa,b = n) (43)

by using (39). Here z ∈ C, |z| ≤ 1. Recall that

τa,b = a1x1>0,t1>a + b1x1<0,t1>b +
(
t1 + τ′a,b

)
(
12≤t1≤a,x1>0 + 12≤t1≤b,x1<0 + 1t1=1 (44)

Note also that

E
(
zt1+τ′a,b 12≤t1≤a,x1>0

)
= E

(
zt1 12≤t1≤a,x1>0

)
E
(
zτa,b

)
= ρ p̂a(z)Gτa,b(z)

where we define the truncated generating function p̂a(z) = ∑a
k=1 zk pk.178

It follows from (39) that Gτa,b(z) is the sum of the following terms

Gτa,b(z) = E1 + E2Gτ′a,b
(z) (45)

where

E1 := za Pr(x1 > 0, t1 > a) + zb Pr(x1 < 0, t1 > b) = zaρF̄(a) + zbρ̄F̄(b),

E2 := E
(
zt1 1t1≤a,x1>0) +E

(
zt1 1t1≤b,x1<0

)
+E(1t1=1)

Thus finally, in Laplace space, the generating functions reads

Gτa,b(z) =
zaρF̄(a) + zbρ̄F̄(b)

1− ρ p̂a(z)− ρ̄ p̂b(z)
(46)

Hence the mass function of τa,b is

P(τa,b = n) =
F̄(a)
2πi

∮
dz

Gτa,b(z)
zn+1 , n ≥ 1 (47)

If either b = a (symmetric case) or ρ = 1, b = 1 (one sided case) it simplifies to

Gτa,a(z) =
za F̄(a)

1− p̂a(z)
(48)

P(τa,a = n) =
F̄(a)
2πi

∮
dz

dz
zn+1−a(1− p̂a(z))

, n ≥ a (49)

The FPT to a is recovered letting b→ ∞; then p̂b(z)→ p̂(z) := ∑∞
n=1 zn pn and179
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Gτa(z) =
zaρF̄(a)

1− ρ p̂a(z)− ρ̄ p̂(z)
(50)

5.4. FPT under the model (11)180

If equation(11) holds the distribution of τa,a simplifies. The generating function and
distribution of the exit time read p̂a(z) = q̄1z(1− (zq1)

a)/(1− zq1) and

Gτa,a(z) =
(q1z)a(1− q1z)

1− z + qa
1q̄1za+1 (51)

Hence when a = 1 we recover Gτ1,1(z) = q1z/(1− q̄1z) corresponding to a geometric
distribution. Note

Pr(t1 = n) = qn−1
1 (1− q1), Pr(τ1,1 = n) = q̄n−1

1 q1 (52)

For a = 2 we have

Gτ2,2(z) =
(q1z)2

1− q̄1z− q1q̄1z2 (53)

If s± := q̄1 ±
√

q̄2
1 + 4q1q̄1 this can be inverted as

P(τ2,2 = n) = q2
1

n−2

∑
j=0

(
n− 2− j

j

)
qj

1q̄n−2−j
1 =

q2
1

(
sn−1
+ − sn−1

−

)
2n−2(s+ − s−)

(54)

Hence summing an arithmetic-geometric series we find if ` = 1/q1

Eτa,a = a +
1

qa
1q̄2

1

(
q1(1− qa+1

1 − q̄1(a + 1)qa+1
1

)
=

`a − 1
`− 1

(55)

Let ξ the number of trials until the first consecutive a successes occur in a sequence181

of of Bernouilli trials with probability of individual success q1. This problem does not182

have a simple answer except when a = 1. Here ξ ∼ Geom(q1).183

To handle the case a ≥ 2 we note that the distribution of ξ is that of the FPT to a184

with ρ = 1 and is recovered letting b→ ∞ i.e. (see (35) ) and using (51)185

ξ = τ1
a,∞ = τ1

a = τ
ρ
a,a and Gξ(z) =

(q1z)a(1− q1z)
1− z + qa

1q̄1za+1 (56)

6. Discussion186

We have considered a discrete-time random walk (xt) which at random times is187

reset to the starting position and performs a deterministic motion between them. We188

have discussed how to interpret the property that the system be averse, neutral or189

inclined towards resetting. We show that such behavior is critical for the existence and190

properties of the stationary distribution. We obtained double barrier probabilities, first191

passage times and the distribution of the escape time from intervals. We pointed out192

that the distribution of the FPT to level k ≥ 1 solves a , a classical problem in probability,193

namely that of the number of trials required in an unfair coin-toss or Bernuilli trial to194

obtain k successes in a row.195
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