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Abstract: We consider a discrete-time random walk (x;) which at random times is reset to the
starting position and performs a deterministic motion between them. We show that the quantity
Pr (xtﬂ =n+1lx = n) ,n — oo determines if the system is averse, neutral or inclined towards
resetting. It also classifies the stationary distribution. Double barrier probabilities, first passage
times and the distribution of the escape time from intervals are determined.
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1. Preliminaries

In a previous paper [1] we introduced the Sisyphus random walk as an infinite Markov
chain that moves on the space state N = {0,1,2,...,00} and that at every step can either
jump one unit rightward, or return to the initial state, from where it is restarted. The
system was named after the king of Ephyra, Sisyphus, who was condemned to lift a
heavy stone in an endless cycle.

Here we generalize the above idea and consider a random walk on the integers
(xt)teny whose dynamics alternates deterministic linear motion with resets which drive
the system to the starting point at the random times (t,),>1. At every clock tick the
position of the random walker is such that |x;| either increases one unit, or returns to
the ground state, whereupon the evolution continues. Such resetting occurs through an
independent mechanism superimposed to the original semi-deterministic evolution.
Once (x;) is reset to the origin at t;, it begins the evolution anew from scratch, which is
deterministic between resets.

Using translational invariance we can suppose that xy = 0 with no loss of generality.
Concretely, starting from xy = 0, three possibilities open for the future position x;: the
system may remain at x; = 0 provided a reset occurs at t = 1; otherwise, it goes one unit
to the right with probability p or to the left with probability g = 1 — p. In addition, if the
system has wandered into the positives so at a certain time t > 0is x; > 0 (respectively
x; < 0) then at time f 4 1, it may either be reset to the origin x;;; = 0 with arbitrary
probability or else increase (respectively, decrease) one unit to x;11 = x; 4 1 (respectively
Xpp1 = x¢ —1).

Such apparent simplicity is misleading as this simple evolution law can exhibit
a surprisingly complex and rich behavior. Indeed, at each site we allow arbitrary
probabilities for the random walk to reset to the origin and, additionally, the possibility
to move both in the positive and negative integers. The only restriction in this general
dynamics is the requirement that (x;);cn be a Markov chain. The resulting system is
a natural, non trivial generalization of that of [1], which is recovered when the reset
probability is independent of the location and when p = 1.

In a different setting such system may be used as an idealized model of the random
dynamics of a “mobile" in a trap, say, who is trying to climb stepwise a ladder or wall
given that at every step there is a common probability of slipping to the bottom, resulting
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in the need to restart again. Here, the natural question would be the determination of
the location probability and expected time to escape the trap.

A related mechanism-Sisyphus cooling— was proposed by Claude Cohen-Tannoudji
in certain optical contexts to the effect that an atom may climb up a potential hill, till
suddenly it is returned to some ground state where it can restart anew. The hallmark
of such systems is the possibility to display “back-to-square-one” behavior, a feature
common in real life systems. Indeed, the study of stochastic processes subject to random
resets is a problem that has attracted a great interest in recent years after the seminal
work of Manrubia and Zanette [2] and Evans and Majumadar [3]. Presently the dynamics
of systems with resets is being subjected to intense study, see the recent review [4]. Other
mechanisms for random walks that are suddenly refreshed to the starting position are
considered in [5,6,35]. Brownian motion with resets is considered in [3,8] while in [9] the
propagator of Brownian motion under time-dependent resetting is obtained (see also [18]
for further elaboration). In [10] these ideas are applied to the case of a compound Poisson
process with positive jumps and constant drift. Further elaboration appears in [11]. Reset
mechanisms have been also thoroughly applied to search strategies in mathematical and
physical contexts as well as to behavioral ecology, see [12-18]. Surprisingly, strategies
that incorporate reset to pure search are advantageous in certain contexts in ecology and
biophysics and molecular dynamics, [19-22]. A generaiiization of the the Kardar-Parisi-
Zhang (KPZ) equation that describes fluctuating interfaces and polymers under resetting
is covered in [23]. Dynamical systems with resets have also been used as proxies of the
classical integrate-and-fire models of neuron dynamics, see [24,25]. In the context of
Lévy flights with resetting see the interesting papers [26,27]. For other applications see
also the recent papers [28-35]

As commented the main aim of this paper is to study the main features of the
semi-deterministic random walk with resets (x;),t = 0,1,. ... The evolution rules for
such random walk are described in section 2. We then study the propensity towards
resetting of the system. According to this important property we divide systems as
reset averse, neutral or reset-inclined, and characterize them in terms of the transition
probabilities and behavior of Pr (xt+1 =n+1x = n), n — oo. In section 3 we study

the stationary distribution that the system approaches for large time. Section 4 considers
first-passage problems and, in particular, two-sided exit probabilities; concretely, given
levels a,b € N, we study the probabiity that x reaches @ > 0 before having reached
—bcand distributions of the escape time. First passage times (FPT) play also a key role in
statistical decision models, or to devise optimal strategies for seeking information, the
rate at which a Brownian particle under the influence of a metastable potential, escapes
from a potential well is also a critical subject in the study of polymers. The so called
Kramers problem [36], is a classical subject in statistical physics.

Under the simplest election p = 1and g, := Pr (x;1q = n+1|x; = n) = g1 constant
we have that the distribution of the FPT to level k > 1 is that of the number of trials required
in an unfair coin-toss to obtain k consecutive successes, a classical problem in probability.
Even with k = 2 the distribution of such problem is not trivial.

2. The Model

Here we define the model at hand. Let x := 0 be the initis al position. The evolution
rules for the random walk (x¢),t = 0,1, ... co are as follows. We suppose that, if for any
t > 01is x; = 0 then the random walk satisfies

Pr (x40 = n|x; = 0) = §1640 + G106 + §190n,—1,j € Z 1)

where we denote g1 = Pr(x;11 # 0|x; = 0) € (0,1) the probability that, starting form
zero, the system moves away from the origin at the next instant and p := Pr(x;11 =
1jx; = 0,x¢41 # 0) € [0,1] the probability that if the system abandons the originat time
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Figure 1. A typical showing sample paths of the process where t; =5,t, =7,... andx; = x5 =1

t it goes to position x;1; = 1. To ease notation for any value p weset p :=1—p,
g1 := 1 — g1. Besides ¢, is Kronecker delta.

Further, we suppose that the random walk (x;),t = 0,1,... o0 is a Markov chain
where if x; = n # 0 the only allowed transitions are either to site # + sign (1) if no reset
occurs, which happens with probability g, 1; or else to {0}, when a reset occurs, with
probability 1 — q,,11. Here the sequence (g,,) satisfies that 0 < g,, < 1 for all n. It follows
that the chain has transition rules

,m= 1
Pr(xt+1:m|xt:”): Ao =1 J4>n>0 ()
1_‘7n+1/ m =20
=n—1
Pr (xt+1 = m|xt = ]’l) = {qn+]/m " ,t 2 —n>0 (3)
1_q|n|+1/ m=20
pqi,m =1
Pr (xm = m|x; = 0) = pq1,m=—1 4)
1—q;, m=0

and 0 otherwise. We also suppose that the infinite product with general term g,, satisfies

n o0
nh_Igr.}o]l:[qj = 0; alternatively ]:1(1 —gj) =00 (5)
This mild requirement does not imply that lim,, ;. g, = 0 (see (12) below).

The model considered in [1] is recovered assuming p = 1 and that the jump-
probability is constant: g1 =g = ...qn = .. ..

2.0.1. Reset times

We denote as t; the random time at which the first reset happens. Here we consider
its distribution probability p, := Pr(t; = n),n =1,...,c0 and other peculiarities of the
Sisyphus random walk. Similarly we denote as t; the random time at which the k—
reset happens. To this end note that forn = 1,2,... the reset takes place at time 7 if in
all previous times no reset has occurred-and so |x1| =1,...,|x,_1| =n—1and x, = 0.
Thus we have transitions {0} — {1} --- — {n —1} — {0} and the correspondnig
probability

pu = Pr(t = 1) = g1 Gy-1n (6)

which is proper random variable, in view of (5).
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The following representation clarifies the meaning and different roles of (p,) and

(n)
pn:="Pr(ty =n) =Pr(t; = n) :=Pr (an =0,x4;#0,0<j< nlxy = O) ?)

and
%:P%MM:mm:QmH#QO<j<@ ®)

We relate both probabilities. We introduce recursively a sequence (B,) via fp = 1
and B, :=4g1...qs,n =1,2,.... Note then that

Pn=4q1---Gu-1Gn = Bu—1 — Bn

This can be inverted as

Bn = Pni1+pni2+ - =Fy(n) =1 Fy(n) ©)

whereF;, = F is the cumulative distribution function (cdf) of t;. Recalling that §;, :=
q1 - . - qu, we finally have that (6) can be inverted as

Y n=12... (10)

2.1. Reset averse and reset-inclined systems

One of the most defining traits in the random walk (2)-(4) is what we call propensity
towards resetting, a measure of how likely is that the resetting mechanism is triggered as
the time from the last reset increases. We say that a system is inclined towards resetting
if such probability grows as the distance to the origin increases: §, < §,41, for all
n. Intuitively, for a reset-inclined system, the random walk becomes more anxious to
return to the origin the greatest the time since the last visit or, alternatively, the farthest
off it is. If this probability decreases (respectively, remains unchanged) we say that
the system is reset-averse or reset-neutral. Reset-neutral chains correspond to having
Gn = qn—1 = q1 € (0,1) for all n. This is the choice considered in [1]. In this case

Pr(ty =n) = q?fl(l —q), Fn) =1—4f (11)

Actually, we are interested in this property for large n. We say that a system is ultimately
averse, neutral or, respectively, inclined towards resetting if as the time from the last reset
tends to infinity the reset probability (g, ) satisfies

0, (inclined)
r}gr;o Gn = nli_r)r(}oPr (xt+n #0[xt =0,x4; #0,0<j < n) = { goo € (0,1) (neutral)
1, (averse)
(12)
The election g, = q1/n, corresponds to an ultimately reset-inclined system. Here
we have limy ;e g4, = 0 and

n

n—1 n
U W - VRN | N
Pn = ) n!,F(n) n!,n 1,2... (13)

A simple calculation yields < t; >= T < ¢, which is bounded respect the parameter 4.
Finally, the choice g, = n/(n + 1) corresponds to a reset-averse system. Here the
chain has power law decay tails:

1
n+1

and F(n) = (14)

Pn = nn+1)
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The elections (13) and (14) are natural modifications of (11) and reflect that the
probability to commit an error that sends the walker to square one diminishes (increases)
with every step. This may be put down to a capability to learn or, in contrast, to forget or
grow tired with the distance to the origin. (14) corresponds to g, = q,_1 (1 + ﬁ) —and

hence to learning— while if g, = q,,_1(1 — %) Zipf law (13): g4 = q1/n, follows.

(14) may also account for uncertainty in the relevant parameters. Suppose we
accept the basic model (11) to hold but are ignorant of the value of parameter q;. Besides
we accept that all values for qq are equally likely; in this situation parameter q; should be
assumed to have Uniform (0, 1) distribution. Bayes theorem implies that the distribution
at posteriori of t; must be given by (14):

1 1 1
Pr(ty =n) = /0 Pr(t; = nl|g1)dgy = /0 dqqul(l —q) = m (15)

We next show that the above behavior is ubiquitous so the reset propensity is directly

related with the tail’s behavior. Indeed, since the sequence F(n) is strictly monotone and
F(n) | 0as n — oo the Stolz-Cesaro theorem gives

Joo := lim g, = lim _F(n) — lim 2" (16)

n—00 n—)ooF(n — 1) n—oo P _q

Requiring ge = e~* € (0,1) we obtain that asymptotically (p,) must grow as

Pn ~ ce ™ cA>0,1n— oo (17)

which is the paradigmatic example of ultimately neutral systems. Note that such (p;)
has medium tails. By contrast tails of the form

M — cowherec > 0,A > 0,a >0 (18)

Pn R ce
give oo = 1if 0 < &« < 1 and g = 0if & > 1. The exponential case & = 1, i.e. the
geometric distribution, marks the crossover between these cases.

Note that slowly, power law decaying sequences as

wnrc/n%c>0,a>1 n— o (19)
p

also correspond to ultimately reset-averse systems. Thus heavy tails of the sequence
(pn) correspond to reset averse systems while the opposite holds with medium and light
(super-exponential) tails like those in (11) and (18).

More complicated tails can be handled noting the behavior of ultimately averse,
neutral or inclined reset systems under sums and products. We use g := & to denote
that lim, e gn € (0,1) (thus lim, . g, = 0,9 or 1). Hence,with obvious notation the

1 )

sums and product rules for 4’ s, say, read
0+0=00+9=8%0+1=10+0=%0+1=1+1=1;

0:0=0-9=0-1=0;, ¢-9=0-1=8%1-1=1
where the symbol @ - ¢ = ¢ is used to mean that if

. 1 . 2 . 1) (2
lim g3 € (0,1), lim g € (0,1), then lim g} € (0,1)

n—o0
As an example, for 0 < ¢ < 1 consider the hybrid system

o+l e
pn_n(n—l—l)v = O n

)
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where v := ¢~*,A > 0. Here p, = p,(ql)p,(f) and tails display mixed exponential and
power-law decay. Hence oo = qc(xl,) : q((xz,) = ¥ :1 = ¢ corresponding to an ultimately

neutral system. This corroborated by exact evaluation of g,,. Equation (10) yields that

gn =nv/(n+1) and 1211 gn=v € (0,1)
n o)

Table 1: The table summarizes the propensity to resetting in terms of the deacy of
pn := Pr(t; = n) and the equilibrium distribution. In all cases A > 0.

Pr—oo F, (n) Jn—se  Propensity Tails Ety

O(e™ "), > 1 O(e=*") 0 inclined Super-exp. < o0
O((%)", O((%)”, 0 inclined Super-exp. < oo
O(e=) O(e™™) €(0,1) neutral exp. < 0
Oe™M),0<a<1 O M)0<a<l1 1 averse Sub-exp. < o0
o(1/n"), a >2 o(1/n* 1), a>2 1 averse Power-law < oo
O(1/n%),1<a<2 O(1/n* 1), 1<a<2 1 averse Power-law = o0

3. Equilibrium distribution

Here we consider the large time or equilibrium distribution of the random walk.
Call xoo = limy—e0 X the limit of the process and 71, := Pr(xeo = 1), n € Zits distribution.

When it exists (77,) has the remarkable porperty that it is an equilibrium state, in the
sense that it has initially this distribution then it will not abandon it. (77,) satisfies the
system

Z Sum Ty = T, M € Z (20)
nez

where (g,,) is the transition probability matrix defined in (3):

nm = Pr (xtJrl =mlx; = n) (21)

To handle this we divide the matrix in upper and lower parts, connected only by the
column and rows with index 0, i.e.

G- 0
¢= < 0 G+> @)
where G_ is essentially obtained from G4 by reflection and G4, 1n,m = 0, c0 reads
(including the 0— column)

fi o p; 0 0 0

q2 0 q2 0 0
G+=1q93 0 0 g3 0 (23)
g 0 ... 0 0 gy

By insertion we find

T = Pq17T0, TT—1 = Pg17T0
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along with the recursive system
Tpi1 = Gu1 70, 2 1and 71,1 = q)y 1 7Tp,n < —1 (24)

Solving recursively we find
Tty = P7t0q192 - - - Gn = mopF(n) and _, = mppF(n),n > 1 (25)

Normalization gives 1/ 7y = Y ;> npn =< t; >= p. whichrequires < t) >= u < o, i.e.
(pn) must decay at least as p, ~ 1/n",r > 2. In this case, letting p,€01,~0 + ply<o + dno,
the stationary distribution is

7tn = (pn/u)E(|n]),n = —oo,..., (26)

The probability that the random walk has drifted to site n for large time decreases as
F(n) does, see Table (1). Note that in no case our Markov process satisfies the “detailed
balance” condition for the stationary distribution: 7,,gum # 7ngmn. This was to be
expected since detailed balance guarantees time-reversibility, a trait that the system at
hand clearly does not exhibit.

For the cases (11), (13) we have

||

7t = pn(1— (h)q‘ln' and 7T, = pne‘“%, n=-o,...0,...,0 (27)

Finally, for system (14) there is neither equilibrium nor stationary distribution,

indicating that the chain spreads out far from the origin and it does not settle to an
equilibrium.

4. Escape probabilities

In a classical study W. Feller [37] showed that most recurrent properties of general
diffusion processes can be codified in terms of two of the functions that define escape
probabilities from an interval (c,d),c¢ < d. Given that the process has started from a
general xg, c < x¢ < d. Feller considers the “scale and speed functions”, defined as

s(x0) = Pr(ty > 1) and m(xg) =< 1.4 > (28)

and shows that they solve certain differential equations (see [37] for an overview).
Here, for any 2 € R we introduce the "hitting time" 77 = inf{t > 0 : x; = a} which
represents the lapse of time necessary to travel from the starting value to a; besides
T4 = min{ T, 74} is the escape time from the interval (c, d).

We perform a similar study here and determine, for given levels a,b € N, —b <
0 < a, the probability that the random walk (x;) reaches a > 0 before having reached
—b. Note that by translational invariance the case when (x) starts from general x is
immediately reduced to that with xy = 0.

We start noting that when resets are switched off the only source of randomness
lies in the first displacement of the random walk away from x = 0; hence, x, = n for
all n if x; = 1. In this case 7, ;—the minimum time to hit eithera > 0 or —b < 0-is a
binary random variable that takes values a and b with probabilities p and p. Besides
Pro(ta < ) = p-

Obviously T, ;, will increase when a reset mechanism is introduced; it is tempting
to think that however resets do not affect the escape probabilities, namely Pry(t, < 1,) = p
still holds. However this is not correct!. To dispel such misinterpretation note tath resets
introduce a bias which favors the closest barrier against the farthest one. This is similar
to the classical waiting time paradox where cycles with very large inter-reset times
have a greater probability than smaller ones. Intuitively, if restarts occur very often the
possibility to reach the farthest barrier diminishes. We now determine this probability.
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A very simple argument goes as follows. Consider the probability ¢, that the
random walk (x) reaches a > 0 before having reached —b when we know that (x;) hits a
or —b in the given cycle. The event that escape occurs at a given cycle, the first, say, is

E .= {X1>0,t1>ﬂ}U{X1<0,t1>b}EE1UE2 (29)
with probability
x = Pr(E) = pF(a) + pF(b) (30)

Hence the probability that escape occurs via the upper barrier is can be evaluated
as the probability of E; conditional on E having happened.

¢, = Pr( escape via a|E) = Pr(E1|E; UEy) = pFK(a) (31)

The reasoning when escape occurs at a general given cycle is a bit more involved
but does not change the result.
Denote /) = p the corresponding probability when no resets are introduced. Then

by >0 o F(b)<Fa)eb>a (32)

which means that resets increase the probability to hit first the closest barrier, as expected.
Further, when a = b (31) yields ¢, = Kg.

We thus have for the neutral chain (11), the reset-averse chain (13) and the reset-
inclined chain (14), respectively

o(o+pah ) o o(p+paf) B
by = pb!(b!p—i—p‘a!q?*”)i = p(pﬂ—pq‘lia!/(a—t—d)!)il (33)
(1+5553) (1+ sty

In the second equality we introduce d := b — a, which measures the departure from
symmetry of the problem and suppose b > a for ease of notation. Figure 2 plots Pr(A)
versus d.

5. Escape times

Here we consider the distribution of 7, ;, = min{7,, 7, } for general levels a,b and a
general model (2)-(4).

5.1. Symmetry properties of First passage times

Denote for a moment as T;b the FPT to either a or —b when Pr(x;,7 = 1|x; =
0,x¢11 # 0) = p. This quantity 7, has a nice interpretation. Suppose the model (11)
holds. Say a success has been scored every time a reset does not happen. Then T | = 7, is the
time that takes to get n > 1 successes in a row provided the probability of individual
success is ¢; a classical problem in probability. Obviously, if # = 1 then 7, -the first time
to reach level 1- must have a geometric distribution with parameter ;. However, even
with n = 2 this problem has no easy solution, not even for the mean times.

We note the interesting relation between the asymmetric and symmetric cases.

1. Ifl;is defined inin (31) and /; + [, = 1 and EX =< X > indicates the expected
value of the random variable X we have

Et), = L.Eth, + LET), (34)
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2. 14, is independent of p. Besides the distributions in the symmetric case and one
sided case are equal, namely, for any b

1 1 _ 1.
’l’,f,a:TBZTaoof’l’ Tap,oozrap (35)

Indeed when the interval is symmetric the escape time will not be influenced by
whether resets favor upward or downward flights; hence (35) must hold. For the
sake of comparison we see that (38) overestimates the time that takes to reach the
boundaries.

A first approximation is given by < 1,;, >~< N > x < t; > where N is the
number of cycles until escape. To warm up we consider first the distribution of N.

By independence of cycles N has a geometric distribution with exit parameter
k := Pr(E) where E, « are defined in (29), (30). Thus we have N ~Geom (x):

Pr(N=n)=x(1-x)"1,n=1,2... and (36)
<N>=(1/x), < Tp >=<N>X <t >:_Z'ZO=%”’9_’1 (37)
' pE(a) + pE(b)
In particular for the symmetric case a = b
e8] [o0] a e8]
<Ta,b>%<znpn)/( Z pn)Za-l-(ann)/( Z pn) (38)
n=1 n=a+1 n=1 n=a+1

Clearly this approximation is only reasonable when the system needs a large number of
cycles to exit the interval, i.e. ¥ ~ 0.

5.2. Mean exit time

To study the exact time to hit a or b we note that depending of what happens at the
the first reset t; there are five excluding and exhausting possibilities. These scenarios are

(S1)xqy >0and t; > a

(S2) xy < 0and t; > b.

(S3) x1 > 0and t; < a.

(54) corresponds to having x; < Oand t; < b.
(S5) corresponds to x; = 0.

Under scenario (S1) (x¢) hits a before it hits b with 7, ), = 4. Under scenario (S2)
(x¢) hits b before a and 7, = b. Scenarios (S3) to (S5) refresh (x;) to the origin and the
"race" starts again from scratch, so 7,, = t; + T;,b where T;,b is the time that remains
until exit once the new cycle starts. This implies that

aifxy > 0,t1 > a
Tap = bifx; <0,t1 > b (39)
t1+1';,hif2 <t1 <a,x;1 >00r2<t;<bx;<0o0rt; =1
and Et,, = apF(a) + bpF(b)+
PE(ti11y <a) + PE(t11y, <p) + (OF (b) + pF(a) )E7,
Thus we finally get

ETa,b =

p(aF(a) +E(t11y,<q b) p(bE(b) +E((ti11<p)) (40)

PE( )P()
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If b — oo then bF(b) — 0 and we recover the mean hitting time to level a as
ETu =a+ —L(]E(tl) 7PE(t11t >,1)) (41)

pE(a) '
Particularly interesting is the symmetric case a = b. Here
E(t;1 2 d
IET‘ﬁa:]Ert}za—l—(;itlS”):a—l-(ann)/( Y. ) (42)
(a) n=1 n=a+1

Note how this implies (34).
5.3. Distribution of the exit time

Finally we consider the distribution of 7, ;. We evaluate its generating function

G(z) = i 2" Pr(t,p = n) (43)

n=1

by using (39). Here z € C, |z| < 1. Recall that
Tup = a1y >04>0 + b1x1<0,t1>b + (tl + T,;,b)

(12§t1 Sa,xl >0 + 12§t1 Sb,xl <0 + 1t1:1 (44)
Note also that

E(Zt1+r‘;’b12§t1§a,x1>0) = E(Ztl 12§t1§u,x1>0)E(ZTa’b) = Pﬁu (Z)GTM, (Z>

where we define the truncated generating function p*(z) = Y¢_, z"py.
It follows from (39) that G, , (z) is the sum of the following terms

GTa,b (Z) =E + EZGT;,b (Z) (45)
where
Ei:=2"Pr(x; > 0,t; > a) + 2" Pr(x; < 0,t; > b) = 2°0F(a) + 2"pF (D),

Ey = E(ztl 1t1§u,x1>0) + E(Zt11t1Sb1x1<0) +E(1y-1)

Thus finally, in Laplace space, the generating functions reads

_ 2pF(a) + 2pF()
G0 = £ S o)

Hence the mass function of 1, is

F(a G, (2)
P(t,, =n) = 2(711') ]{ dz ;411 n>1 (47)

If either b = a (symmetric case) or p = 1,b = 1 (one sided case) it simplifies to

_ Z°F(a)
GTu,a (Z) - 1— ﬁﬂ Z) (48)
. F(a) dz
P(t,, =n) = e ]{dzznJrl 1= N> (49)

(z
The FPT to a is recovered letting b — oo; then p¥(z) — p(z) := ¥, z"p, and
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(50)

5.4. FPT under the model (11)

If equation(11) holds the distribution of 7, , simplifies. The generating function and
distribution of the exit time read p?(z) = §1z(1 — (zq1)")/(1 — zq7) and

_ (m2)"(1 = q12)
Gr,l(2) = 12+ gzt (51)

Hence when a = 1 we recover G, (z) = 912/ (1 — §1z) corresponding to a geometric
distribution. Note

Pr(ty =n) =g} '(1—q1), Pr(tip =n) =4 'q1 (52)

For a = 2 we have

_ (‘712)2
GTZ,Z (Z) - 1 _ q]z _ qlqlzz (53)

If s1 := gy & /5 + 44171 this can be inverted as
n—-1_ .n—

n—2 71—2— . P p_o_i q% S+ S_ 1
P(typ=n) =47 ). ( -/ )q’lq'f = 2£2(s — )> (54)
j=0 ) + -

Hence summing an arithmetic-geometric series we find if £ = 1/g;

0 —1

1 9)

1
Etoe=a+—(q(1—qf™" —q(a+1)gi™") =
" q‘iq%< ' )

Let ¢ the number of trials until the first consecutive a successes occur in a sequence
of of Bernouilli trials with probability of individual success g;. This problem does not
have a simple answer except when a = 1. Here { ~ Geom(q;).

To handle the case a > 2 we note that the distribution of ¢ is that of the FPT to a
with p = 1 and is recovered letting b — oo i.e. (see (35) ) and using (51)

z)"(1 —gqz
= Tal,oo =1, =T, and Ge(z) = W (56)

6. Discussion

We have considered a discrete-time random walk (x;) which at random times is
reset to the starting position and performs a deterministic motion between them. We
have discussed how to interpret the property that the system be averse, neutral or
inclined towards resetting. We show that such behavior is critical for the existence and
properties of the stationary distribution. We obtained double barrier probabilities, first
passage times and the distribution of the escape time from intervals. We pointed out
that the distribution of the FPT to level k > 1 solves a, a classical problem in probability,
namely that of the number of trials required in an unfair coin-toss or Bernuilli trial to
obtain k successes in a row.
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Recerca (AGAUR), Contract No. RED2018-102518-T.
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