Preprint
Article

This version is not peer-reviewed.

Developing Practical Models of Complex Salts for Molten Salt Reactors

A peer-reviewed article of this preprint also exists.

Submitted:

02 June 2021

Posted:

03 June 2021

You are already at the latest version

Abstract
olten salt reactors (MSRs) utilize salts as coolant or as the fuel and coolant together with fissile isotopes dissolved in the salt. It is necessary to therefore understand the behavior of the salts to effectively design, operate, and regulate such reactors, and thus there is a need for thermodynamic models for the salt systems. Molten salts, however, are difficult to represent as they exhibit short range order that is dependent on both composition and temperature. A widely useful approach is the modified quasichemical model in the quadruplet approximation that provides for consideration of first and second nearest neighbor coordination and interactions. Its use in the CALPHAD ap-proach to system modeling requires fitting parameters using standard thermodynamic data such as phase equilibria, heat capacity, and others. Shortcoming of the model is its inability to directly vary coordination numbers with composition or temperature. Another issue is the difficulty in fitting model parameters using regression methods without already having very good initial values. The proposed paper will discuss these issues and note some practical methods for the effective genera-tion of useful models.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated