We investigate a scalar particle under Lorentz symmetry breaking effects determined by a tensor out of the Standard Model Extension (SME) in the presence of a Cornell-type potential by modifying the mass term M → M +S in the KG-equation. The field configuration is such that a Coulomb-type radial electric field and a constant magnetic field can be induced by Lorentz symmetry violation, and analyze the behaviour of a scalar particle. One can see that the bound states solution to the KG-equation under the consider effects can be achieved, and a quantum effect characterized by the dependence of charge density distribution parameter on the quantum numbers of the system is observed.