Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications

Version 1 : Received: 18 May 2021 / Approved: 20 May 2021 / Online: 20 May 2021 (09:50:22 CEST)

A peer-reviewed article of this Preprint also exists.

Szindler, M.; Szindler, M.; Drygała, A.; Lukaszkowicz, K.; Kaim, P.; Pietruszka, R. Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications. Materials 2021, 14, 3743. Szindler, M.; Szindler, M.; Drygała, A.; Lukaszkowicz, K.; Kaim, P.; Pietruszka, R. Dye-Sensitized Solar Cell for Building-Integrated Photovoltaic (BIPV) Applications. Materials 2021, 14, 3743.

Abstract

One of the important research directions in the field of photovoltaics is integration with construction. The integration of solar cell systems with a building can reduce installation costs and help optimize the used space. One of the interesting types of cells is dye-sensitized solar cells. In addition to their interesting properties, they also have aesthetic value. In the classic arrangement, they are constructed using glass with a transparent conductive layer (TCL). This article describes replacing a classic glass counter electrode with an electrode based on a ceramic tile and nickel foil. This solution makes it possible to expand their construction applications. The advantage of this solution is full integration with construction while simultaneously generating electricity. A dye-sensitized solar cell was built layer-by-layer on ceramic tile and nickel foil. An atomization method was used to deposit fluorine-doped tin oxide, and then a screen printing method was used to deposit a platinum layer. The electrical parameters of the manufactured DSSCs with and without a counter electrode tile were characterized by measuring their current-voltage characteristics under standard AM 1.5 radiation. A dye-sensitized solar cell integrated with ceramic tiles and nickel foil was produced and displayed an efficiency of over 4%.

Keywords

Keywords: Renewable energy; Nanotechnology; Building-integrated photovoltaics (BIV); Thin films; Dye-sensitized solar cells

Subject

Engineering, Automotive Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.