Preprint
Article

Explainable Hopfield Neural Networks by Using an Automatic Video Generation System

This version is not peer-reviewed.

Submitted:

16 May 2021

Posted:

19 May 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Hopfield Neural Networks (HNNs) are recurrent neural networks used to implement associative memory. Their main feature is their ability to pattern recognition, optimization, or image segmentation. However, sometimes it is not easy to provide the users with good explanations about the results obtained with them due to mainly the large number of changes in the state of neurons (and their weights) produced during a problem of machine learning. There are currently limited techniques to visualize, verbalize, or abstract HNNs. This paper outlines how we can construct automatic video generation systems to explain their execution. This work constitutes a novel approach to get explainable artificial intelligence systems in general and HNNs in particular building on the theory of data-to-text systems and software visualization approaches. We present a complete methodology to build these kinds of systems. Software architecture is also designed, implemented, and tested. Technical details about the implementation are also detailed and explained. Finally, we apply our approach for creating a complete explainer video about the execution of HNNs on a small recognition problem.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

294

Views

360

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated