Preprint
Article

Design Optimization of Centrifugal Microfluidic "Lab-on-a-Disc" Systems towards Fluidic Larger-Scale Integration

This version is not peer-reviewed.

Submitted:

12 May 2021

Posted:

13 May 2021

Read the latest preprint version here

A peer-reviewed article of this preprint also exists.

Abstract
Enhancing the degree of functional multiplexing while assuring operational reliability and manufacturability at competitive costs are crucial components to enable comprehensive sample-to-answer automation, e.g., for use in common, decentralized “Point-of-Care” or “Point-of-Use” scenarios. This paper demonstrates a model-based ‘digital twin’ approach which efficiently supports the algorithmic design optimization of exemplary centrifugo-pneumatic (CP) dissolvable-film (DF) siphon valves towards larger-scale integration (LSI) of well-established “Lab-on-a-Disc” (LoaD) systems. Obviously, the spatial footprint of the valves and their upstream laboratory unit operations (LUOs) have to fit, at a given radial position prescribed by its occurrence in the assay protocol, into the locally available disc space. At the same time, the retention rate of rotationally actuated valve and, most challenging, its band width related to unavoidable experimental tolerances need to slot into a defined interval of the practically allowed frequency envelope. A set of design rules, metrics, and methods and instructive showcases for computationally assisted optimization of valve structures are presented.
Keywords: 
centrifugal microfluidics, Lab-on-a-Disc, large-scale integration, reliability, tolerances, band width, packing density
Subject: 
Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

537

Views

477

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated