Preprint
Article

This version is not peer-reviewed.

Lagged Covariance and Cross-Covariance Operators of Processes in Cartesian Products of Abstract Hilbert Spaces

Submitted:

12 May 2021

Posted:

13 May 2021

Read the latest preprint version here

Abstract
A major task in Functional Time Series Analysis is measuring the dependence within and between processes, for which lagged covariance and cross-covariance operators have proven to be a practical tool in well-established spaces. This article deduces estimators and asymptotic upper bounds of the estimation errors for lagged covariance and cross-covariance operators of processes in Cartesian products of abstract Hilbert spaces for fixed and increasing lag and Cartesian powers. We allow the processes to be non-centered, and to have values in different spaces when investigating the dependence between processes. Also, we discuss features of estimators for the principle components of our covariance operators.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated