Lagged Covariance and Cross-Covariance Operators of Processes in Cartesian Products of Abstract Hilbert Spaces

Sebastian Kühnert

Abstract

A major task in Functional Time Series Analysis is measuring the dependence within and between processes, for which lagged covariance and cross-covariance operators have proven to be a practical tool in well-established spaces. This article deduces estimators and asymptotic upper bounds of the estimation errors for lagged covariance and cross-covariance operators of processes in Cartesian products of abstract Hilbert spaces for fixed and increasing lag and Cartesian powers. We allow the processes to be non-centered, and to have values in different spaces when investigating the dependence between processes. Also, we discuss features of estimators for the principle components of our covariance operators.

MSC 2010 subject classifications: 47B10, 60G05, 62J10
Keywords: Estimation; functional time series; lag-h-covariance operator; lag-h-cross covariance operator; principle components

1 Introduction

Functional Data Analysis (FDA) and Functional Time Series Analysis (FTSA), the research areas dealing with (time series/processes of) random functions, have gained more and more significance, since considering random functions instead of vectors, provided the context allows it, assures more accurate results. Such an extension on infinite-dimensional spaces is enabled by ongoing developments in processing techniques, and unproblematic for separable Banach spaces from a mathematical point of view, see Ledoux & Talagrand [31]. FDA/FTSA find applications in various fields. In economics, to predict the stock market trend [23] and the value at risk with intra-day return curves [37], comparing yield curves [42], and energy forecasts [9], [10]. In medicine, for characterizing COVID-19 data [45] (U.S. data) and [4] (Italy data), and analyzing brain images [46] and dementia [6]. For predicting mortality rates [13]. In face [35] and speech recognition [15]. For forecasting pollution concentrations [3] and forest biodiversity [32]. Also, Functional Principal Component Analysis (FPCA) was used to examine rainfall variability [17] and flight data [24]. For extensive introductions to FDA/FTSA, see Ferraty & Vieu [12], Ramsay & Silverman [38], Bosq [5], Horváth & Kokoszka [19] and Hsing & Eubank [22].

In FTSA, the analysis of the dependence structure within and between given processes is of great importance. If these are wide-sense stationary (often denoted as weak/second-order stationary), where for convenience usually (strictly) stationarity and finite second moments are assumed, this can be done by using lag-h-covariance operators and lag-h-cross-covariance operators, respectively. The lag h thereby denotes the time difference of interest. Another important subject of study in FTSA is FPCA, since functional principle components, i.e., the eigenvalues and eigenfunctions of the lag-0-covariance operator, the covariance operator of a stationary process, yield an efficient representation.

*EMAIL: s.kuehnert_math@gmx.de
1.1 State of the art

Probabilistic features of and estimators for lag-h-covariance operators $\mathcal{C}_{X,h}$ of stationary processes $X = (X_k)_{k \in \mathbb{Z}}$ with values in $L^2[0,1]$, the space of measurable, square-Lebesgue integrable real valued functions with domain $[0,1]$, are widely studied for fixed lag h, see, e.g., [5], [19], [22], [34], [27]. Further, [39] developed covariance estimators in the space of continuous functions $C[0,1]$, [48] in tensor product Sobolev-Hilbert spaces, [33] for continuous surfaces, and [18], [1] for arbitrary separable Hilbert spaces. [34], [39], [18], [1] constrained their assertions to autoregressive (AR) processes, where [1] deduced the results for a random AR(1) operator. Thereby, [5], [19], [22], [1] utilized classical moment estimators, [27] estimated the integral kernels, in [18], [34] truncated spectral decompositions occured having estimated principle components, and [48] used operator regularized covariance estimators. Also, the limit distribution of the estimation errors of the lag-0-covariance operators was discussed in [26], [28].

FPCA in the Hilbert space $L^2[0,1]$ is extensively discussed in the existing literature, both from a probabilistic and statistical point of view. In [5], [19], [22], [26], [28] one finds asymptotic upper bounds for the principle components, both estimated separately and uniformly, in sense of convergence in the second mean as well as almost surely. Moreover, [49] introduced L^1-norm FPCA.

A comprehensive study of lag-h-cross-covariance operators $\mathcal{C}_{XY,h}$ of stationary $L^2[0,1]$-valued processes $X = (X_k)_{k \in \mathbb{Z}}, Y = (Y_k)_{k \in \mathbb{Z}}$ can be found in Rice & Shum [36]. They established operator estimates, discussed methods measuring their significance and deduced their limit distribution. Aue & Klepsch [2], who intensively discussed the estimation procedure of operators of linear, invertible processes in $L^2[0,1]$, had to estimate lag-h-cross-covariance operators of specific processes having values in Cartesian products of $L^2[0,1]$ in order derive their main results. Enabling processes to have values in Cartesian products is also handy when studying AR(p) processes with $p > 1$, see [5]. Also, the quite recent work of Sarkar & Panaretos [41] dealt in great detail with covariance estimation of functional data defined over multidimensional domains.

1.2 Our contributions

This article studies lagged covariance and cross-covariance operators of stationary processes in Cartesian products of abstract Hilbert spaces based on ideas in [36] and [2]. The focus is on deducing moment estimators and asymptotic upper bounds of the estimation errors for these operators. This is also done for the principle components of lag-0-covariance operators. They are estimated individually, and uniformly in sense of a supremum of a set of indices whose cardinality depends on a certain rate of convergence. Particularly worth mentioning is that this work’s results facilitate a high degree of flexibility. This is because all processes are allowed to attain values in arbitrary Cartesian products of separable Hilbert spaces. Further, when the objects of investigation are lagged cross-covariance operators between two processes, we allow them to attain values in different spaces. Moreover, all results are stated for processes with arbitrary first moments, and the lag h as well as the processes’ Cartesian powers are allowed to be fixed or increase w.r.t. the sample sizes. In the works [29] resp. [30], slightly milder results were utilized to derive asymptotic upper bounds of estimation errors for operators of (G)ARCH and linear, invertible processes, and the principle components of lag-0-covariance operators.

Investors of, e.g., solar and other power stocks of European companies could ask themselves what impact monthly sunshine duration in central Europe, see Fig 1, will have on their share values one month ahead, see Fig 2. This can be analyzed by using our lag-1-cross-covariance operators, and our lag-h-covariance operators might be advantageous for understanding the dependence structure within the processes in Fig 1-2.
Figure 1: Graphs of monthly sunshine duration in central europe in June and July 2020, interpretable as two consecutive realizations of an $L^2[0,1]^2$-valued process, from the homepage www.dwd.de of the German Meteorological Service.

Figure 2: Three consecutive realizations of a fictitious process, which is identifiable as an $(L^2[0,1])^4$-process, describing the share values of four assets of a portfolio, e.g., measured in EUR. The step width used is $\frac{1}{1000}$.

1.3 Outline

The rest of this paper is organized as follows. Section 2 outlines our notation, restates important terminology, definitions and interrelationships of several operator types, defines our (lagged) (cross-)covariance operators and studies their probabilistic features, and briefly explains L^p-m-approximibility. Section 3 introduces our estimators for the lagged (cross-)covariance operators and for the principle components of the lag-0-covariance operator, and derives asymptotic upper bounds of the estimation errors. Section 4 conducts a simulation study. Section 5 summarizes the main results and outlines future research. Moreover, Section 6 contains proofs.
2 Definitions and basics

2.1 Notation

$\lfloor \cdot \rfloor$ denotes the floor function, $\text{sgn}(\cdot)$ the sign function and $1_A(\cdot)$ the indicator function of a set A. For sequences $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}} \leq (0, \infty)$, $a_n \sim b_n$ denotes $\frac{a_n}{b_n} \to 1$, $a_n \prec b_n$ denotes $\frac{a_n}{b_n} \to c$ for some $c \neq 0$, (for $n \to \infty$) $a_n = \omega(b_n)$ if $b_n = o(a_n)$ and $a_n = \Omega(b_n)$ if $b_n = O(a_n)$ with common asymptotic notation $o(\cdot)$, $O(\cdot)$, and $\Xi[a_n, b_n] := \Omega(a_n) \cap O(b_n)$. Also, 0_V stands for the identity element of addition of a vector space $V, 1_V : V \to V$ for the identity operator, and operator for a linear map. Hereinafter, let $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ be a real, separable Hilbert space. On Hilbert spaces we assume the norms to be induced by their inner product, and abbreviate ‘complete orthonormal system’ by CONS. For $x, y \in \mathcal{H}$, $x \perp y$ denotes $\langle x, y \rangle_{\mathcal{H}} = 0$. We define scalar multiplication and vector addition on $\mathcal{H}^n := \{(x_1, \ldots, x_n)^T | x_1, \ldots, x_n \in \mathcal{H}\}$, with $n \in \mathbb{N}$, componentwise. Then, $(\mathcal{H}^n, \langle \cdot, \cdot \rangle_{\mathcal{H}^n})$ where $(x, y)_{\mathcal{H}^n} := \sum_{i=1}^n \langle x_i, y_i \rangle_{\mathcal{H}}$ for $x := (x_1, \ldots, x_n)^T$, $y := (y_1, \ldots, y_n)^T \in \mathcal{H}^n$, is a real, separable Hilbert space. In all respects, our random elements are defined on some common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. $X \overset{d}{=} Y$ means two random variables X, Y are equal in distribution, and ‘a.s.’ denotes almost surely. For processes (X_n) and (Y_n), $X_n = O_p(Y_n)$ (for $n \to \infty$) means $(X_n/Y_n)_n$ is asymptotically \mathbb{P}-stochastic bounded. For $p \in (1, \infty)$, $L^p_{\mathcal{H}} = L^p_{\mathcal{H}}(\Omega, \mathcal{A}, \mathbb{P})$ is the space of (classes of) \mathcal{H}-valued random variables X with $\mathbb{E}[X] \in L^p_{\mathcal{H}}$ is a Banach space. We denote the subspace of $L^p_{\mathcal{H}}$-process if $X_k \in L^p_{\mathcal{H}}$ for all k, and centered if $\mathbb{E}(X_k) = 0_{\mathcal{H}}$ for all k with expectation in Bochner-integral sense, see [22], p. 40–45.

2.2 Some basic operator theory

Now, we state important spaces of operators between real, separable Hilbert spaces $(\mathcal{H}_i, \langle \cdot, \cdot \rangle_{\mathcal{H}_i})$ for $i = 1, 2$. For thorough overviews of operators between Hilbert spaces, see the monographs Dunford & Schwartz [11], Gohberg et al. [14], Weidmann [47].

The space of bounded operators mapping from \mathcal{H}_1 to \mathcal{H}_2 will be denoted by $\mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}$, with $\mathcal{L}_{\mathcal{H}_1} := \mathcal{L}_{\mathcal{H}_1, \mathcal{H}_1}$, where an operator $A : \mathcal{H}_1 \to \mathcal{H}_2$ is bounded if

$$||A||_{\mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}} := \sup_{||x||_{\mathcal{H}_1} \leq 1} ||A(x)||_{\mathcal{H}_2} < \infty.$$

Such operators are continuous, and $(\mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}, || \cdot ||_{\mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}})$ is a Banach space. We denote the subspace of finite-rank operators of $\mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}$ by $\mathcal{F}_{\mathcal{H}_1, \mathcal{H}_2}$, with $\mathcal{F}_{\mathcal{H}_1} := \mathcal{F}_{\mathcal{H}_1, \mathcal{H}_1}$. Further, A^* denotes the adjoint of $A \in \mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}$, where $A^* \in \mathcal{L}_{\mathcal{H}_2, \mathcal{H}_1}$.

A crucial subspace of $\mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}$ is the space of compact operators mapping from \mathcal{H}_1 to \mathcal{H}_2, where $A \in \mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}$ is compact if A maps the unit ball of \mathcal{H}_1 to a compact set in \mathcal{H}_2. Such operators possess the singular value decomposition

$$A = \sum_{j=1}^{\infty} s_j (e_j \otimes f_j)$$

with $x \otimes y := \langle x, \cdot \rangle_{\mathcal{H}_1} y$ for $x \in \mathcal{H}_1, y \in \mathcal{H}_2$, where $(e_j)_{j \in \mathbb{N}}$ and $(f_j)_{j \in \mathbb{N}}$ are CONS of \mathcal{H}_1 and \mathcal{H}_2, respectively, and where $(s_j)_{j \in \mathbb{N}}$ is the monotonically decreasing zero sequence of non-negative numbers of A which are called singular values. The decay rate of the singular values of a compact operator $A \in \mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2}$ can be interpreted as a regularity measure of A, and expressed by the p-Schatten-norm

$$||A||_p := \left(\sum_{j=1}^{\infty} s_j^p \right)^{1/p}, \quad p \in [1, \infty),$$

4
where the inequality $\|A\|_p \leq \|A\|_q$ holds for all $p < q$. $(\mathcal{S}^p_{\mathcal{H}_1, \mathcal{H}_2}, \|\cdot\|_p)$ is a Banach space for all $p \in [1, \infty)$, where the p-Schatten-class is defined by

$$\mathcal{S}^p_{\mathcal{H}_1, \mathcal{H}_2} := \{ A \in \mathcal{L}_{\mathcal{H}_1, \mathcal{H}_2} \mid \|A\|_p < \infty \},$$

with $\mathcal{S}^p_{\mathcal{H}_1, \mathcal{H}_2} \subset \mathcal{S}^q_{\mathcal{H}_1, \mathcal{H}_2}$ for all $p < q$. The essential classes are $\mathcal{N}_{\mathcal{H}_1, \mathcal{H}_2} := \mathcal{S}^1_{\mathcal{H}_1, \mathcal{H}_2}$ with $\mathcal{N}_{\mathcal{H}_1} := \mathcal{N}_{\mathcal{H}_1, \mathcal{H}_1}$, $\|\cdot\|_{\mathcal{N}_{\mathcal{H}_1, \mathcal{H}_2}} := \|\cdot\|_1$, and $\mathcal{S}_{\mathcal{H}_1, \mathcal{H}_2} := \mathcal{S}^2_{\mathcal{H}_1, \mathcal{H}_2}$ with $\mathcal{S}_{\mathcal{H}_1} := \mathcal{S}_{\mathcal{H}_1, \mathcal{H}_1}$, $\|\cdot\|_{\mathcal{S}_{\mathcal{H}_1, \mathcal{H}_2}} := \|\cdot\|_2$, the spaces of nuclear/trace class resp. Hilbert-Schmidt operators. The trace of $A \in \mathcal{N}_{\mathcal{H}_1}$ is defined by $\text{tr}(A) := \sum_{j=1}^{\infty} \langle A(e_j), e_j \rangle_{\mathcal{H}_1}$, and $(\mathcal{S}_{\mathcal{H}_1, \mathcal{H}_2}, \langle \cdot, \cdot \rangle_{\mathcal{S}_{\mathcal{H}_1, \mathcal{H}_2}})$ is a separable Hilbert space, where

$$\langle A, B \rangle_{\mathcal{S}_{\mathcal{H}_1, \mathcal{H}_2}} := \sum_{j=1}^{\infty} \langle A(e_j), B(e_j) \rangle_{\mathcal{H}_2}, \quad A, B \in \mathcal{S}_{\mathcal{H}_1, \mathcal{H}_2},$$

and where $(e_j)_{j \in \mathbb{N}}$ is an arbitrary CONS of \mathcal{H}_1 in both definitions.

On $\mathcal{H}_1 := L^2[0,1]$, an integral operator A mapping from \mathcal{H}_1 to \mathcal{H}_1 is defined by the Lebesgue integral

$$(A(x))(t) := \int_0^1 a(s,t)x(s) \, ds, \quad x \in \mathcal{H}_1, t \in [0,1]$$

if it exists, where $a : [0,1]^2 \to \mathbb{R}$ is a measurable function, the (integral) kernel of A. Such an operator satisfies $A \in \mathcal{S}_{\mathcal{H}_1}$ iff $\int_0^1 \int_0^1 a^2(s,t) \, ds \, dt < \infty$.

2.3 Features of our operators

Here, we define (cross-)covariance operators and their lagged versions on real, separable Hilbert spaces, and outline some of their features (for a definition and features of these operators on Banach spaces, see [5]). Thereby, $(\mathcal{H}_i, \langle \cdot, \cdot \rangle_{\mathcal{H}_i})$ denote real, separable Hilbert spaces for $i = 1, 2$.

Definition 2.1. Let X, Y be $L^2_{\mathcal{H}_1}$ resp. $L^2_{\mathcal{H}_2}$-valued random variables, and let $m_X := \text{E}(X), m_Y := \text{E}(Y)$. Then, the covariance operator of X is defined by

$$\mathcal{C}_X := \text{E}((X - m_X) \otimes (X - m_X)),$$

and the cross-covariance operator of X, Y is defined by

$$\mathcal{C}_{X,Y} := \text{E}((X - m_X) \otimes (Y - m_Y)).$$

For centered random variables X, Y, which is no restriction if X, Y are integrable since $X' := X - \text{E}(X)$ and $Y' := Y - \text{E}(Y)$ are centered in any case, covariance and cross-covariance operators possess the following main probabilistic features.

Lemma 2.1. Let X, Y be centered $L^2_{\mathcal{H}_1}$- resp. $L^2_{\mathcal{H}_2}$-valued random variables.

(a) \mathcal{C}_X is a self-adjoint, positive semi-definite operator with $\mathcal{C}_X \in \mathcal{N}_{\mathcal{H}_1}$, and

$$\|\mathcal{C}_X\|_{\mathcal{N}_{\mathcal{H}_1}} = \text{E}\|X\|^2_{\mathcal{H}_1},$$

(2.1)

and \mathcal{C}_X possesses the representation

$$\mathcal{C}_X = \sum_{j=1}^{\infty} c_j (\mathcal{C}_j \otimes \mathcal{C}_j)$$

(2.2)

where $(c_j)_{j \in \mathbb{N}}$ is the eigenvalue sequence which is w.l.o.g. monotonically decreasing, non-negative and absolutely-summable, and where $(\mathcal{C}_j)_{j \in \mathbb{N}}$ is the related eigenfunction sequence of \mathcal{C}_X which is a CONS of \mathcal{H}_1.

(b) \(\mathcal{C}_{X,Y} \in \mathcal{N}_{\mathcal{H}_1,\mathcal{H}_2}, \mathcal{C}_{X,Y}^* = \mathcal{C}_{Y,X} \in \mathcal{N}_{\mathcal{H}_2,\mathcal{H}_1} \) and
\[
||\mathcal{C}_{X,Y}||_{\mathcal{N}_{\mathcal{H}_1,\mathcal{H}_2}} = ||\mathcal{C}_{Y,X}||_{\mathcal{N}_{\mathcal{H}_2,\mathcal{H}_1}} \leq E||X||_{\mathcal{H}_1} ||Y||_{\mathcal{H}_2}.
\]
Furthermore,
\[
\text{independence of } X, Y \Rightarrow \mathcal{C}_{X,Y} = 0_{\mathcal{N}_{\mathcal{H}_1,\mathcal{H}_2}},
\]
and if \(\mathcal{H}_1 = \mathcal{H}_2, \mathcal{C}_{X,Y} = 0_{\mathcal{L}_{\mathcal{H}_1}} \) implies \(E(X,Y)_{\mathcal{H}_1} = 0 \).

(c) If \(\mathcal{H}_1 = \mathcal{H}_2 = L^2[0,1], \mathcal{C}_X \) and \(\mathcal{C}_{X,Y} \) are integral operators with kernels \(k_X(s,t) := \text{Cov}(X(s), X(t)) \) resp. \(k_{X,Y}(s,t) := \text{Cov}(X(s), Y(t)),) \), \(s, t \in [0, 1] \).

Similarly to covariances and variances for real-valued random variables hold the following calculation rules for (cross-)covariance operators.

Lemma 2.2. Let \(W, X \) resp. \(Y, Z \) be centered \(L^2_{\mathcal{H}_1} \)- resp. \(L^2_{\mathcal{H}_2} \)-valued random variables. Also, let \(A \in \mathcal{L}_{\mathcal{H}_1} \) and \(B \in \mathcal{L}_{\mathcal{H}_2} \).

(a) The covariance operator satisfies
\[
\mathcal{C}_{W+X} = \mathcal{C}_W + \mathcal{C}_{W,X} + \mathcal{C}_{X,W} + \mathcal{C}_X,
\]
where \(\mathcal{C}_{W+X} = \mathcal{C}_W + \mathcal{C}_X \) if \(W, X \) are independent. Further, for the cross-covariance operator holds
\[
\mathcal{C}_{W+X,Y+Z} = \mathcal{C}_{W,Y} + \mathcal{C}_{W,Z} + \mathcal{C}_{X,Y} + \mathcal{C}_{X,Z}.
\]

(b) The covariance operator of the \(L^2_{\mathcal{H}_1} \)-valued random variable \(A(X) \) satisfies
\[
\mathcal{C}_{A(X)} = A \mathcal{C}_X A^*,
\]
and for the cross-covariance operator of the \(L^2_{\mathcal{H}_1} \)- resp. \(L^2_{\mathcal{H}_2} \)-valued variables \(A(X) \) and \(B(Y) \) holds
\[
\mathcal{C}_{A(X),B(Y)} = B \mathcal{C}_{X,Y} A^*.
\]

For the definition of the functional counterparts of the auto-covariance and cross-covariance function of real-valued processes, which are the lag-\(h \)-covariance resp. lag-\(h \)-cross-covariance operators, given processes do not necessarily have to be strictly, but wide-sense stationary. To reiterate, a process \((X_k)_k \) is (strictly) stationary if \((X_{k+h},...,X_{k+n+h}) \overset{d}{=} (X_k,...,X_{k+n}) \) holds for all \(k, ..., k_n, h \) and \(n \in \mathbb{N} \), and an \(L^2_{\mathcal{H}_1} \)-process \(X := (X_k)_k \) is wide-sense stationary if for all \(k \) holds \(E(X_k) = c \) for some \(c \in \mathcal{H}_1 \) and if for all \(k, l \) holds \(\mathcal{C}_{X_k,X_l} = \mathcal{C}_{X_0,X_{l-k}} \).

Definition 2.2. Let \(X := (X_k)_{k \in \mathbb{Z}}, Y := (Y_k)_{k \in \mathbb{Z}} \) be wide-sense stationary \(L^2_{\mathcal{H}_1} \)- resp. \(L^2_{\mathcal{H}_2} \)-processes. Then, the lag-\(h \)-covariance operator of \(X \) is defined by
\[
\mathcal{C}_{X|_h} := \mathcal{C}_{X_0,X_h}, \quad \forall h \in \mathbb{Z},
\]
with \(\mathcal{C}_X := \mathcal{C}_{X_0} \), and the lag-\(h \)-cross-covariance operator of \(X, Y \) is defined by
\[
\mathcal{C}_{X|_Y|_h} := \mathcal{C}_{X_0,Y_h}, \quad \forall h \in \mathbb{Z}.
\]

Remarks 2.1. (a) Lemmas 2.1-2.2 can be applied to lag-\(h \)-(cross-)covariance operators. Thus, \(\mathcal{C}_{X|_h} = \mathcal{C}_{X,-h} \) and \(\mathcal{C}_{X|Y|_h} = \mathcal{C}_{X|X,-h} \) for any \(h \). Also, \(\mathcal{C}_{X|_h} = 0_{\mathcal{L}_{\mathcal{H}_1}} \) for \(h \neq 0 \) if \(X := (X_k)_{k \in \mathbb{Z}} \) consists of independent variables, and if \(X := (X_k)_{k \in \mathbb{Z}}, Y := (Y_k)_{k \in \mathbb{Z}} \) are independent, \(\mathcal{C}_{X|Y|_h} = 0_{\mathcal{L}_{\mathcal{H}_1,\mathcal{H}_2}} \).
(b) Since Lemma 2.1 (c) for (cross-)covariance can be transferred to lag-h-(cross-)covariance operators, it is reasonable that these operators contain the expression ‘(cross-)covariance’ as well.

In the following, we illustrate a specific lag-0-covariance operator. For further, but somewhat more complicated examples and sketches, see Section 4.

Example 2.1. Let $\mathcal{H} := L^2[0,1]$, and let $\varepsilon := (\varepsilon_k)_{k \in \mathbb{Z}}$ be a process with

$$
\varepsilon_k(t) := \frac{Z_k + B_k(t)}{\sqrt{1 + t}} \quad \text{a.s.,} \quad \forall k \in \mathbb{Z}, \, \forall t \in [0,1], \tag{2.9}
$$

where $Z_k \sim \mathcal{N}(0,1)$, $B_k = (B_k(t))_{t \in [0,1]}$ are Wiener processes, and where $\ldots, Z_{-1}, B_{-1}, Z_0, B_0, Z_1, B_1, \ldots$ are independent. Then, $(\varepsilon_k)_{k \in \mathbb{Z}}$ is an i.i.d., centered $L^2_\mathcal{H}$-process with $\varepsilon_0(t) \sim \mathcal{N}(0,1)$ for all $t \in [0,1]$, and for the integral kernel $k_{\varepsilon,0} = k_\varepsilon$ of $\mathcal{C}_{\varepsilon,0} = \mathcal{C}_\varepsilon$ holds

$$
k_\varepsilon(s,t) = \text{Cov}(\varepsilon_0(s), \varepsilon_0(t)) = \sqrt{\frac{1 + \min(s,t)}{1 + \max(s,t)}}, \quad \forall s,t \in [0,1]. \tag{2.10}
$$

![Figure 3: The integral kernel $k_\varepsilon(s,t)$ in (2.10) for $s,t \in [0,1]$.](image)

2.4 L^p-m-approximibility

For deriving asymptotic upper bounds of estimation errors for operators or functionals related to a stationary process, usually weak dependence of the given process is needed. We impose L^p-m-approximibility, a well manageable measure of weak dependence developed by Hörmann & Kokoszka [21].

Definition 2.3. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle_\mathcal{H})$ be a separable Hilbert space and let $p \geq 1$. Then, a process $(Z_k)_{k \in \mathbb{Z}}$ called $L^p_\mathcal{H}$-m-approximable if it is an $L^p_\mathcal{H}$-process with

$$
Z_k = f(\varepsilon_k, \varepsilon_{k-1}, \ldots) \tag{2.11}
$$

for any k, where $(\varepsilon_k)_{k \in \mathbb{Z}}$ is an i.i.d. process with values in a measurable space S and where $f : S^\infty \to \mathcal{H}$ is a measurable function, such that

$$
\sum_{m=1}^\infty \nu_{p,\mathcal{H}}(Z_m - Z_{m;m}) < \infty.
$$

Thereby, $\nu_{p,\mathcal{H}}(\cdot) := (\mathbb{E}||\cdot||_\mathcal{H}^p)^{1/p}$ and

$$
Z_{k;m} := f(\varepsilon_k, \varepsilon_{k-1}, \ldots, \varepsilon_{k-m+1}, \varepsilon_{k-m+k}; \varepsilon_{k-m-1}; \ldots) \tag{2.12}
$$

where $(\varepsilon_{k;m})_k$ are independent copies of $(\varepsilon_k)_k$ for each n.

$L^p_\mathcal{H}$-m-approximibility of a process thus means it is *non-anticipative* w.r.t. another process, that is (2.11), and approximable by an m-dependent process so that the approximation errors measured by the $L^p_\mathcal{H}$-norm $\nu_{p,\mathcal{H}}(\cdot)$ are summable. Also, (2.11) yields stationarity of $(Z_k)_k$ due to [44], Theorem 3.5.3, and $(Z_{k;m})_k$ are stationary, m-dependent processes for each m with $Z_{k;m} \overset{d}{=} Z_k$ for all k, m.

3 Main results

Herein, we discuss the main results of this paper, namely the estimation procedure for lag-h-covariance and lag-h-cross-covariance operators of U^m- resp. V^n-valued processes for $m, n \in \mathbb{N}$, and for the principal components of lag-0-covariance operators. Thereby, $(U^m, \langle \cdot, \cdot \rangle_{U^m})$ and $(V^n, \langle \cdot, \cdot \rangle_{V^n})$ are real, separable Hilbert spaces coming from real, separable Hilbert spaces $(U, \langle \cdot, \cdot \rangle_U)$ and $(V, \langle \cdot, \cdot \rangle_V)$. Throughout this article, we assume that our processes have the following representations.

Assumption 3.1. (a) Let $X := (X_k)_{k \in \mathbb{Z}}$ be an $L^2_{\mathbb{U}}$-m-approximable process and let $\mathcal{X} := (\mathcal{X}_k)_{k \in \mathbb{Z}}$ be an U^m-valued process with

$$X_{m+j} := (X_{m+jp}, \ldots, X_{1+jp})^T$$

for any $j \in \mathbb{Z}$ and some $p \in \mathbb{N}$. Further, X_1, \ldots, X_M is a sample of X with $M \geq m$, thus $\mathcal{X}_m, \ldots, \mathcal{X}_M$ with $\mathcal{M} = \mathcal{M}_M := \left\lceil \frac{M-m}{p} \right\rceil + m$ is a sample of \mathcal{X}, and the sample size is $\mathcal{M} = \mathcal{M}_M := \mathcal{M}_M - m + 1$.

(b) Let $Y := (Y_k)_{k \in \mathbb{Z}}$ be an $L^2_{\mathbb{V}}$-m-approximable process and non-anticipative w.r.t. the same i.i.d. process $(\varepsilon_k)_{k \in \mathbb{Z}}$ as X in (a), and let $\mathcal{Y} := (\mathcal{Y}_k)_{k \in \mathbb{Z}}$ be an V^n-valued process with

$$Y_{n+j} := (Y_{n+jq}, \ldots, Y_{1+jq})^T$$

for any $j \in \mathbb{Z}$ and some $q \in \mathbb{N}$. Moreover, Y_1, \ldots, Y_N with $N \geq n$ is a sample of Y, thus $\mathcal{Y}_n, \ldots, \mathcal{Y}_N$ with $\mathcal{N} = \mathcal{N}_N := \left\lceil \frac{N-n}{q} \right\rceil + n$ is a sample of \mathcal{Y}, and the sample size is $\mathcal{N} = \mathcal{N}_N := \mathcal{N}_N - n + 1$.

Remarks 3.1. (a) $(\mathcal{X}_k)_k$ and $(\mathcal{Y}_k)_k$ are stationary processes since the underlying processes $(X_k)_k$ resp. $(Y_k)_k$ are stationary due to L^2-m-approximability.

(b) The common case in the assumption above is when $m = n = 1$. This case can always be derived as a specific example from our results.

(c) Imposing two different sample sizes M, N for $(X_k)_k$ resp. $(Y_k)_k$ is useful if more data of one process can be collected w.r.t. time, but one is not willing to relinquish information by choosing the minimum of M, N.

(d) Choosing p, q so that $1 \leq p < m, 1 \leq q < n$, enables to reuse the first $(m-p)$ resp. $(n-q)$ entries of \mathcal{X}_k resp. \mathcal{Y}_k for the last $(m-p)$ resp. $(n-q)$ entries of \mathcal{X}_{k+1} resp. \mathcal{Y}_{k+1}. If one needs to successively stack (realizations of) X'_ks resp. Y'_ks in a vector of length m resp. n, one has to put $p = m, q = n$. One could also choose $p > m, q > n$, which is useful when data is missing, since by an appropriate choice of p and q, the time indices where (realizations of) X'_ks and/or Y'_ks are missing can be bridged.

(e) $(\mathcal{X}_k)_k$ resp. $(\mathcal{Y}_k)_k$ is i.i.d. for $p \geq m$ resp. $q \geq n$ if $(X_k)_k$ resp. $(Y_k)_k$ is.

(f) Whenever large sample sizes of $(\mathcal{X}_k)_k$ and $(\mathcal{Y}_k)_k$ are needed, and reusing values of $(X_k)_k$ resp. $(Y_k)_k$ does not cause issues, p and q should be set as small as possible, to wit $p = q = 1$. Thereby, processes $(\mathcal{X}_k)_k$ as in (3.1) with $p = 1$ were used for estimating the operators of $L^2[0,1]$-valued AR in [5], (G)ARCH in [30], and invertible linear processes in [2], [30].

Our model also allows the vector lengths m, n and the numbers describing the ‘degree of reuse’ p, q of given variables to depend on the sample sizes as follows.

Assumption 3.2. (a) $(m_M)_M, (p_M)_M \subseteq \mathbb{N}$ are sequences with $m = m_M, p = p_M = \Xi[1, M] = \Omega(1)$ \(o(M)\) where $a_n = \Omega(b_n)$ means $b_n = O(a_n)$.

(b) $(n_N)_N, (q_N)_N \subseteq \mathbb{N}$ are sequences with $n = n_N, q = q_N = \Xi[1, N]$.
From the Assumptions 3.1-3.2 (a) and Assumptions 3.1-3.2 (b) follows

\[\mathcal{M} = \mathcal{M}_M \sim p^{-1} M, \]

resp. \[\mathcal{N} = \mathcal{N}_N \sim q^{-1} N. \] (3.3)

(3.4)

Since the time difference where some variable has a certain effect on another one could also change over time respectively the sample size, we also allow the lag \(h \in \mathbb{Z} \) to vary w.r.t. given sample sizes as follows.

Assumption 3.3. (a) \(h = h_M = \Xi(1, p^{-1} M) \);

(b) \(h = h_N = \Xi(1, q^{-1} N) \).

Lemma 3.1. Let Assumptions 3.1-3.2 (a) hold. Then,

\[\hat{m}_X := \frac{1}{\mathcal{M}_M} \sum_{i=m}^{\mathcal{M}_M} \mathcal{X}_i \]

is an unbiased estimator for the first moment \(m_X := E(\mathcal{X}_1) \), and for \(M \to \infty \):

\[E ||\hat{m}_X - m_X||^2_{U^m} = O(m_\mathcal{M}^{-1}) = O(mpM^{-1}). \]

Remarks 3.2. Lemma 3.1 can be generalized to higher moments if the related power of the random variable of the process is well-defined on the given Hilbert space. Powers of random variables are for instance well-defined on \(L^2(0, 1] \). There, \(X^2 \) denotes the pointwise product of \(X \) and \(X^3 \) e.g. the pointwise product of \(X^2 \) and \(X \), \(X^4 \) e.g. the pointwise product of \(X^3 \) and \(X \) etc.

3.1 Estimation of lag-\(h \)-covariance operators

When estimating lag-\(h \)-covariance operators, we distinguish, as for real-valued processes, between centered processes and those with an unknown first moment.

If the process \(X = (X_k)_k \) in Assumption 3.1 (a) is centered and consequently also \(\mathcal{X} = (\mathcal{X}_k)_k \), we estimate \(\mathcal{C}_{\mathcal{X}, h} \) with \(|h| < \mathcal{M}_M \) through

\[\hat{\mathcal{C}}_{\mathcal{X}, h} := \begin{cases} \frac{1}{\mathcal{M}_M} \sum_{k=m+|h|}^{\mathcal{M}_M} \mathcal{X}_k \otimes \mathcal{X}_{k+h}, & h < 0, \\ \frac{1}{\mathcal{M}_M} \sum_{k=m+|h|}^{\mathcal{M}_M} \mathcal{X}_k \otimes \mathcal{X}_{k+h}, & h \geq 0, \end{cases} \] (3.5)

where \(\mathcal{M}_M := \mathcal{M}_M - |h| \), \(\mathcal{M}_M := \mathcal{M}_M - |h| \). The operators \(\hat{\mathcal{C}}_{\mathcal{X}, h} \) are finite-rank operators (\(\hat{\mathcal{C}}_{\mathcal{X}, h} \in \mathcal{F}_{U^m} \)) with \(\hat{\mathcal{C}}_{\mathcal{X}, h} = \hat{\mathcal{C}}_{-\mathcal{X}, -h} \), and \(\hat{\mathcal{C}}_{\mathcal{X}, 0} \) is self-adjoint and positive semi-definite.

Theorem 3.1. Let Assumptions 3.1-3.3 (a) hold and let \(X \) be centered. Then, \(\hat{\mathcal{C}}_{\mathcal{X}, h} \) is an unbiased estimator for \(\mathcal{C}_{\mathcal{X}, h} \) with \(|h| < \mathcal{M}_M \), and for \(M \to \infty \) holds

\[E ||\hat{\mathcal{C}}_{\mathcal{X}, h} - \mathcal{C}_{\mathcal{X}, h}||^2_{\mathcal{S}_{U^m}} = O((1+|h|)m_\mathcal{M}^2 pM^{-1}). \] (3.6)

If the first moment \(m_X \) of \(X = (X_k)_k \) is unknown and thus also \(m_X = (m_X, \ldots, m_X)^T \in \mathcal{U}^m \), we estimate \(\mathcal{C}_{\mathcal{X}, h} \) with \(|h| < \mathcal{M}_M - 1 \) by

\[\hat{\mathcal{C}}'_{\mathcal{X}, h} := \begin{cases} \frac{1}{\mathcal{M}_M} \sum_{k=m+|h|}^{\mathcal{M}_M} \mathcal{X}_k \otimes \hat{\mathcal{X}}_{k+h} - \hat{\mathcal{X}}_k \otimes \hat{\mathcal{X}}_h, & h < 0, \\ \frac{1}{\mathcal{M}_M} \sum_{k=m+|h|}^{\mathcal{M}_M} \mathcal{X}_k \otimes \hat{\mathcal{X}}_{k+h} - \hat{\mathcal{X}}_k \otimes \hat{\mathcal{X}}_h, & h \geq 0, \end{cases} \] (3.7)

with moment estimators

\[\hat{m}_{\mathcal{X}} := \begin{cases} \frac{1}{\mathcal{M}_M} \sum_{i=m+|h|}^{\mathcal{M}_M} \mathcal{X}_i, & h < 0, \\ \frac{1}{\mathcal{M}_M} \sum_{i=m}^{\mathcal{M}_M} \mathcal{X}_i, & h \geq 0, \end{cases} \]

\[\hat{m}'_{\mathcal{X}} := \begin{cases} \frac{1}{\mathcal{M}_M} \sum_{j=m+|h|}^{\mathcal{M}_M} \mathcal{X}_j, & h < 0, \\ \frac{1}{\mathcal{M}_M} \sum_{j=m}^{\mathcal{M}_M} \mathcal{X}_j, & h \geq 0. \end{cases} \]
These empirical lag-h-covariance operators satisfy also $\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha \in \mathcal{F}_{\mathcal{U}^m}$ with $\hat{\mathcal{C}}_{\mathcal{X},-h}^\alpha = \hat{\mathcal{C}}_{\mathcal{X},0}^\alpha$ and $\hat{\mathcal{C}}_\mathcal{X}^\alpha = \hat{\mathcal{C}}_{\mathcal{X},0}^\alpha$ is self-adjoint and positive semi-definite.

Theorem 3.2. Under Assumptions 3.1-3.3 (a), $\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha$ is an unbiased estimator for $\mathcal{C}_{\mathcal{X},h}^\alpha$ with $|h| < M - 1$ if $\sum_{j,k=1;j\neq k} M_{j,k} = 0$, and for $M \to \infty$,

$$||\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha - \mathcal{C}_{\mathcal{X},h}^\alpha||_{\mathcal{S}_{\mathcal{U}^m}}^2 = O_P((1+|h|)m^2pM^{-1}).$$

(3.8)

Remarks 3.3.

(a) Theorems 3.1-3.2 extend the existing literature regarding the estimation of (lagged) covariance operators in several ways, see e.g. [1], [5], [16], [21], [26], [18], [19], [29], [30]. This is because the upper bounds in both Theorems are derived for lagged covariance operators of processes with arbitrary moment values in arbitrary separable Hilbert spaces, and since the processes’ ‘outer dimension’ m and simultaneously the lag h is allowed to grow w.r.t. the sample size M.

(b) The best achievable rates in Theorems 3.1-3.2 are $O(M^{-1})$ resp. $O_P(M^{-1})$, which apply if $h = h_M, m = m_M, p = p_M$ are bounded or even fixed.

(c) Using $\frac{1}{M_{j,k}^{\alpha\alpha}}$ instead of $\frac{1}{M_{j,k}}$ in (3.7) enables to formulate the sufficient condition for unbiasedness in Theorem 3.2. For $h = 0$, this condition holds if $\mathcal{C}_{\mathcal{X},h} = 0$ for all $h \neq 0$ which is due to (2.4) particularly the case if \mathbf{X} is a process of i.i.d. random variables.

(d) In Theorem 3.2, we considered convergence in probability instead of convergence in mean since in the proof emerge reciprocals of eigenvalues.

Now, we exemplarily illustrate some upper bounds in Theorem 3.1.

Example 3.1. (a) For $h = m = p = 1$, (3.6) is $O(M^{-1})$, see Remarks 3.3 (b).

(b) For $h = 0$, and $m = m_M := \lfloor M^{1/4} \rfloor, p = p_M := \lfloor M^{1/8} \rfloor$ for all $M \in \mathbb{N}$, (3.6) is $O(M^{-3/8})$.

(c) Let $h = h_M = m = m_M = p = p_M := \lfloor M^{1/8} \rfloor$ for all $M \in \mathbb{N}$. Consequently, Assumption 3.3 (a) is satisfied, and (3.6) equals $O(M^{-1/2})$.

3.2 Estimation of lag-h-cross-covariance operators

Herein, we transfer the estimation procedure for lag-h-covariance to lag-h-cross-covariance operators $\mathcal{C}_{\mathcal{X},h}^\alpha$. If the processes $\mathbf{X} = (X_k)_h$ and $\mathbf{Y} = (Y_k)_h$ in Assumption 3.1 are centered and subsequently also $\mathcal{X} = (\mathcal{X}_k)_h$ and $\mathcal{Y} = (\mathcal{Y}_k)_h$, we estimate $\mathcal{C}_{\mathcal{X},h}^\alpha$ with $n - \mathcal{M} \leq h \leq \mathcal{N} - m$ by

$$\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha := \frac{1}{\mathcal{L}_{\mathcal{M},N,h}} \sum_{k = \tilde{l}_{m,n,h}}^{\tilde{L}_{M,N,h}} \mathcal{X}_k \otimes \mathcal{Y}_{k+h},$$

(3.9)

where $\tilde{l}_{m,n,h} := \max(m, n - h)$, $\tilde{L}_{M,N,h} := \min(\mathcal{M} - \mathcal{N} - n, m - \mathcal{M} \leq h \leq \mathcal{N} - m)$ and where $\mathcal{L}_{\mathcal{M},N,h} := \tilde{L}_{M,N,h} - \tilde{l}_{m,n,h}$. Thereby, $\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha \in \mathcal{F}_{\mathcal{U}^m \mathcal{Y}^n}$ and $\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha = \hat{\mathcal{C}}_{\mathcal{X},-h}^\alpha$. When estimating the lag-h-cross-covariance operators, we also impose the following.

Assumption 3.4. The sequences in Assumptions 3.1-3.3 satisfy $\tilde{l}_{m,n,h} = o(\tilde{L}_{M,N,h})$.

Theorem 3.3. Let Assumptions 3.1-3.4 hold and let \mathbf{X}, \mathbf{Y} be centered. Then, $\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha$ is an unbiased estimator for $\mathcal{C}_{\mathcal{X},h}^\alpha$ with $n - \mathcal{M} \leq h \leq \mathcal{N} - m$, and for $h = h_L$, with $L = L_{M,N} := \min(M,N)$, $m = m_M, n = n_N$ holds for $M, N \to \infty$:

$$E||\hat{\mathcal{C}}_{\mathcal{X},h}^\alpha - \mathcal{C}_{\mathcal{X},h}^\alpha||_{\mathcal{S}_{\mathcal{U}^m \mathcal{Y}^n}}^2 = O((1+|h|)mn\mathcal{L}_{M,N,h}^{-1})$$

(3.10)
If the first moments \(m_X \) and/or \(m_Y \) of \(X, Y \) in Assumption 3.1 are unknown, thus also \(m_X = (m_{X_1}, ..., m_{X_N})^T \in U^m \) and/or \(m_Y = (m_{Y_1}, ..., m_{Y_N})^T \in V^n \), \(\hat{m}_X, \hat{m}_Y \) with \(n - N - m \) is estimated by

\[
\hat{m}_{X|Y} := \frac{1}{\hat{L}_{m,n,h}} \sum_{k=\hat{l}_{m,n,h}}^{\hat{L}_{m,n,h}} (X_k - \hat{m}_X) \otimes (Y_{k+h} - \hat{m}_Y)
\]

(3.11)

If \(\hat{L}_{m,n,h} > \hat{l}_{m,n,h} \), with moment estimators

\[
\hat{m}_X := \frac{1}{\hat{L}_{m,n,h}} \sum_{i=\hat{l}_{m,n,h}}^{\hat{L}_{m,n,h}} X_i, \quad \hat{m}_Y := \frac{1}{\hat{L}_{m,n,h}} \sum_{j=\hat{l}_{m,n,h}}^{\hat{L}_{m,n,h}} Y_{j+h}.
\]

(3.12)

Thereby, \(\hat{m}_{X|Y} \in \mathcal{F}_{U,V} \) and \(\hat{m}_{X|h} = \hat{m}_{X|-h} = \hat{m}_{X'} \) for all \(h \).

Theorem 3.4. Under Assumptions 3.1-3.4, \(\hat{m}_{X|Y} \) is an unbiased estimator for \(m_{X|Y} \) with \(n - N - m \) and for \(h = h_L \) with \(L = L_{M,N} := \min(M,N) \), \(m = m_M \) and \(n = n_N \) holds for \(M, N \rightarrow \infty \):

\[
||\hat{m}_{X|Y} - m_{X|Y}||_{\mathcal{F}_{U,V}} = O_P((1 + |h|)mnL^{-1}_{M,N,h}).
\]

(3.13)

Remarks 3.4. (a) Although estimating (lagged) cross-covariance operators is widely discussed, see e.g. [36], [5], [2], [18], Theorems 3.3-3.4 are new in many ways. First, both processes can attain values to be well-defined. The best possible rates in Theorems 3.3-3.4, \(O(M^{-1}) \) resp. \(O_P(M^{-1}) \), hold if \(h = h_L, m = m_M, n = n_N, p = p_M, q = q_N \) are bounded, and if \(M \gg N \).

(b) The reason that the initial and final value of the sum of our empirical lag \(h \)-cross-covariance operators in (3.9) and (3.11) are relatively complicated, is, because \(\mathcal{F}_k \) and \(\mathcal{F}_{k+h} \) simultaneously have to be well-defined.

(c) Assumption 3.4 ensures that the upper bounds (3.10) and (3.13) are zero sequences if the sequences in Assumptions 3.1-3.3 are chosen appropriately.

(d) The best possible rates in Theorems 3.3-3.4, \(O(M^{-1}) \) resp. \(O_P(M^{-1}) \), hold if \(h = h_L, m = m_M, n = n_N, p = p_M, q = q_N \) are bounded, and if \(M \gg N \).

(e) By following the lines in the proof of Theorem 3.4, it becomes clear that omitting the estimation of \(\mathcal{F}_k \) resp. \(\mathcal{F}_{k+h} \) in (3.12) if \(X \) is centered and \(m_Y \) is unknown resp. if \(m_X \) is unknown and \(Y \) is centered, has no positive effect on the convergence rate (3.13) in Theorem 3.4.

(f) The condition for unbiasedness in Theorem 3.4 is for instance for \(h = 0 \) satisfied if \(X, Y \) are independent, subsequently also \(\mathcal{F}_X, \mathcal{F}_Y \).

As in Example 3.1, we state several possible upper bounds in Theorem 3.3. Such examples can also be applied to Theorem 3.4.

Example 3.2. (a) Let \(h = m = n = p = q = 1 \) and \(N = N_M := \lfloor M^{1/2} \rfloor \) for all \(M \). Then, with \(L = \min(M,N) \), (3.10) becomes \(O(L^{-1}) = O(M^{-1/2}) \).

(b) Let \(h_k = \lfloor k^{1/8} \rfloor, m_k = \lfloor k^{1/8} \rfloor, n_k = \lfloor k^{1/6} \rfloor, p_k = \lfloor k^{1/10} \rfloor, q_k = \lfloor k^{1/9} \rfloor \) for all \(k, N = N_M := \lfloor M^{1/2} \rfloor \) for all \(M \). Then, \(h = h_L \sim M^{1/16}, m = m_M \sim M^{1/8}, n = n_N \sim M^{1/12}, p = p_M \sim M^{1/10}, q = q_N \sim M^{1/18} \), hence, \(\hat{l}_{m,n,h} \sim \min(M^{1/8}, M^{1/12} - M^{1/16}) \sim M^{1/8} \) and \(\hat{L}_{m,n,h} \sim \min(M^{9/10} + M^{1/8}, M^{4/9} + M^{1/8} - M^{1/16}) \sim M^{4/9} \). Consequently, all Assumptions in Theorem 3.3 hold, and (3.10) is \(O(M^{1/16+1/8+1/12-4/9}) = O(M^{-25/144}) \).
3.3 Estimation of principle components

Herein, we examine the estimation procedure of the principle components of lag-0-covariance operators $C_{\mathscr{X}} = C_{\mathscr{X},0}$ of the \mathcal{U}^m-valued processes $\mathscr{X} = (\mathscr{X}_k)_{k \in \mathbb{Z}}$ in Assumption 3.1 (a). Thereby, $(c_j)_{j \in \mathbb{N}}, (\hat{c}_j)_{j \in \mathbb{N}}$ resp. $(\hat{c}_j)_{j \in \mathbb{N}}$ are the eigenfunction and $(\hat{c}_j)_{j \in \mathbb{N}}, (\hat{c}_j)_{j \in \mathbb{N}}$ resp. $(\hat{c}_j)_{j \in \mathbb{N}}$ the associated w.l.o.g. monotonically decreasing eigenvalue sequences of $C_{\mathscr{X}}, \hat{C}_{\mathscr{X}} = C_{\mathscr{X},0}$ in (3.5) resp. $\hat{C}_{\mathscr{X}} = C_{\mathscr{X},0}$ in (3.7). Also, since the vector lengths m of the elements of $\mathscr{X} = (\mathscr{X}_k)$ can vary w.r.t. M, we occasionally write $c_j = c_{j,m}$ and $\hat{c}_j = \hat{c}_{j,m}$.

At first, due to [5], Lemma 4.2, for any $j \in \mathbb{N}$ holds

$$|\hat{c}_j - c_j| \leq \|C_{\mathscr{X}} - \hat{C}_{\mathscr{X}}\|_2 \leq |\hat{c}_j - c_j| \leq \|C_{\mathscr{X}} - \hat{C}_{\mathscr{X}}\|_2,$$

(3.14)

Corollary 3.1. Let Assumptions 3.1-3.2 (a) hold. Then,

$$\sup_{j \in \mathbb{N}} (\hat{c}_j - c_j)^2 = O_P(m^2pM^{-1}),$$

and if $X = (X_k)$ in Assumption 3.1 (a) is centered,

$$\mathbb{E}(\sup_{j \in \mathbb{N}} (\hat{c}_j - c_j)^2) = O(m^2pM^{-1}).$$

We proceed with estimating the eigenfunctions c_j of $C_{\mathscr{X}}$ by \hat{c}_j if \mathscr{X} is centered and by \tilde{c}_j if the first moment of \mathscr{X} is unknown. Eigenfunctions are unambiguously determined except for their sign, why it is reasonable to estimate c_j by

$$\tilde{c}_j := \text{sgn}(\hat{c}_j, c_j)_{U^m}\hat{c}_j \quad \text{resp.} \quad \tilde{c}_j := \text{sgn}(\hat{c}_j, c_j)_{U^m}\hat{c}_j$$

(3.15)

where ‘sgn’ is the sign function.

![Figure 4: Estimation of c_j by \hat{c}_j, exemplified in \mathbb{R}^2](image)

However, using \tilde{c}_j resp. \tilde{c}_j as estimator for c_j is problematic, since $\tilde{c}_j \perp c_j$ a.s. resp. $\tilde{c}_j \perp c_j$ a.s., thus $\text{sgn}(\tilde{c}_j, c_j)_{U^m} \neq 0$ a.s. and $\text{sgn}(\tilde{c}_j, c_j)_{U^m} \neq 0$ a.s. is not guaranteed for fixed j, M, so if $\tilde{c}_j \perp c_j$ resp. $\tilde{c}_j \perp c_j$, one is not able to allocate a unique estimator for c_j. This feature, though, was inevitable in various conversions leading to asymptotic upper bounds of the estimation errors for operators of $L^2[0,1]$-valued (G)ARCH and linear, invertible processes in [29] resp. [30].

We bypass this problem by modifying \tilde{c}_j and \tilde{c}_j as follows. Let $(u_i)_{i \in \mathbb{N}}$ be a CONS of \mathcal{U}^m and let $(\zeta_i)_{i \in \mathbb{N}}$ be a sequence of i.i.d., $\mathcal{N}(0,1)$-distributed random variables, independent of the observations of X. Then, for all j, M,

$$\tilde{c}_j := \hat{c}_j + \sum_{i=1}^{\infty} \frac{\zeta_i u_i}{i^2M} \quad \text{and} \quad \tilde{c}_j := \hat{c}_j + \sum_{i=1}^{\infty} \frac{\zeta_i u_i}{i^2M}$$

(3.16)
are well-defined with $\tilde{c}_j \in L_2 \in C_j$ a.s. resp. $\tilde{c}_j \in L_2 \in C_j$, thus $\text{sgn}(\tilde{c}_j, c_j)_{U^m} \neq 0$ a.s. and $\text{sgn}(\tilde{c}_j, c_j)_{U^m} \neq 0$ a.s. Hence, we estimate c_j by

$$\tilde{c}_j := \left[1_{\mathbb{R}\setminus\{0\}}(\text{sgn}(\tilde{c}_j, c_j)_{U^m}) \text{sgn}(\tilde{c}_j, c_j)_{U^m} + 1_{\{0\}}(\text{sgn}(\tilde{c}_j, c_j)_{U^m}) \right] \hat{c}_j, \quad (3.17)$$

$$\tilde{c}_j^\dagger := \left[1_{\mathbb{R}\setminus\{0\}}(\text{sgn}(\tilde{c}_j, c_j)_{U^m}) \text{sgn}(\tilde{c}_j, c_j)_{U^m} + 1_{\{0\}}(\text{sgn}(\tilde{c}_j, c_j)_{U^m}) \right] \hat{c}_j', \quad (3.18)$$

where $1_A(\cdot)$ stands for the indicator function of a set A. These estimators satisfy

$$\tilde{c}_j = \text{sgn}(\tilde{c}_j, c_j)_{U^m} \hat{c}_j \text{ a.s. resp. } \tilde{c}_j^\dagger = \text{sgn}(\tilde{c}_j, c_j)_{U^m} \hat{c}_j' \text{ a.s.} \quad (3.19)$$

For stating upper bounds of estimation errors when using the estimators in (3.16), following technical preliminaries are needed. Due to [5], Lemma 4.3,

$$||\tilde{c}_j - c_j||_{U^m} \leq \tilde{\gamma}_j ||\tilde{\mathcal{C}}_j - \mathcal{C}_j||_{L_{U^m}}, \quad ||\tilde{c}_j^\dagger - c_j||_{U^m} \leq \tilde{\gamma}_j ||\tilde{\mathcal{C}}_j^\dagger - \mathcal{C}_j||_{L_{U^m}} \quad (3.20)$$

for any $j \in \mathbb{N}$ if the eigenspace of c_j is one-dimensional, where $\tilde{\gamma}_j := 2\sqrt{2}\gamma_1, \tilde{\gamma}_j := 2\sqrt{2}\max(\gamma_{j-1}, \gamma_j)$ for $j > 1$, and where

$$\gamma_j := (c_j - c_{j+1})^{-1}, \quad j \in \mathbb{N}. \quad (3.21)$$

Assumption 3.5. \mathcal{C}_j is injective, and the eigenvalues of \mathcal{C}_j satisfy $c_j \neq c_{j+1}$ and $\kappa(j) = c_j$ for all $j \in \mathbb{N}$ where $\kappa: \mathbb{R} \to \mathbb{R}$ is a convex function.

Under Assumption 3.5 holds both

$$c_1 > c_2 > \cdots > 0, \quad (3.22)$$

and for any sequence $(k_j)_j \subseteq \mathbb{N}$ with $k = k_M = \Omega(1)$,

$$\sup_{j \leq k} \tilde{\gamma}_j = \gamma_k. \quad (3.23)$$

Lemma 3.2. Let Assumptions 3.1-3.2 (a) and 3.5 hold. Further, let $(k_j)_j \subseteq \mathbb{N}$ be a sequence with $k = k_M = \Omega(1)$, and let $\gamma_{j,m} := 1/(c_{j,m} - c_{j+1,m})$. Then,

$$||\tilde{c}_j^\dagger - c_j||^2_{U^m} = O(\gamma_{j,m}^2 m^2 p M^{-1}), \quad \forall j \in \mathbb{N}, \quad (3.24)$$

$$\sup_{j \leq k} ||\tilde{c}_j^\dagger - c_j||^2_{U^m} = O(\gamma_{j,m}^2 m^2 p M^{-1}), \quad (3.25)$$

and if $X = (X_k)_k$ in Assumption 3.1 (a) is centered,

$$\mathbb{E}||\tilde{c}_j - c_j||^2_{U^m} = O(\gamma_{j,m}^2 m^2 p M^{-1}), \quad \forall j \in \mathbb{N}, \quad (3.26)$$

$$\mathbb{E}(\sup_{j \leq k} ||\tilde{c}_j - c_j||^2_{U^m}) = O(\gamma_{j,m}^2 m^2 p M^{-1}). \quad (3.27)$$

These statements for the ‘classical’ eigenfunction estimators (3.15) can be transferred to our advanced estimators (3.17), (3.18).

Theorem 3.5. Let Assumptions 3.1-3.2 (a) and 3.5 hold, and let $(k_j)_j \subseteq \mathbb{N}$ be a sequence with $k = k_M = \Omega(1)$. Then,

$$||\tilde{c}_j - c_j||^2_{U^m} = O(\gamma_{j,m}^2 m^2 p M^{-1}), \quad \forall j \in \mathbb{N}; \quad (3.28)$$

$$\sup_{j \leq k} ||\tilde{c}_j - c_j||^2_{U^m} = O(\gamma_{j,m}^2 m^2 p M^{-1}). \quad (3.29)$$

Moreover, if $X = (X_k)_k$ in Assumption 3.1 (a) is centered,

$$\mathbb{E}||\tilde{c}_j - c_j||^2_{U^m} = O(\gamma_{j,m}^2 m^2 p M^{-1}), \quad \forall j \in \mathbb{N}; \quad (3.30)$$

$$\mathbb{E}(\sup_{j \leq k} ||\tilde{c}_j - c_j||^2_{U^m}) = O(\gamma_{j,m}^2 m^2 p M^{-1}). \quad (3.31)$$
Remarks 3.5. (a) Theorem 3.5 and also Lemma 3.2 can be seen as generalizations of results in [5], [21], [26], [28] dealing with estimating eigenfunctions of centered $L^2[0,1]$-valued processes.

(b) If $m = n_M$ is bounded, the sequences of reciprocal spectral gaps $(\gamma_{j,m})_j$ are bounded for any j. Consequently, (3.28) equals $O_P(M^{-1})$, and (3.30) is $O(M^{-1})$. Moreover, $(\gamma_{k,m})_M$ is guaranteed to be bounded if $k = k_M$ and $m = n_M$ are bounded. Then, (3.29) is $O_P(M^{-1})$, and (3.31) is $O(M^{-1})$.

4 A simulation study

Herein, we simulate realizations and estimators of lagged covariance and cross-covariance operators of specific processes. To avoid unnecessary complexity, and to ensure vividness of the derived results, we discuss centered processes whose underlying processes attain values in $\mathcal{H} := L^2[0,1]$. In our calculations with the program language R, any $x \in \mathcal{H}$ is evaluated at $t = 0, \frac{1}{250}, \ldots, \frac{249}{250}$, and $\langle x, y \rangle_\mathcal{H}$ with $x, y \in \mathcal{H}$ is approximated by the Riemann sum \[\frac{1}{250} \sum_{j=1}^{250} x_j(\frac{j-1}{250})y(\frac{j}{250}). \]

4.1 Setup

For some $m, n \in \mathbb{N}$, let $\mathfrak{X} := (\mathfrak{X}_k)_{k \in \mathbb{Z}}$ and $\mathfrak{Y} := (\mathfrak{Y}_k)_{k \in \mathbb{Z}}$ be processes with

\[\mathfrak{X}_k := (X_k, \ldots, X_{k-m+1})^T \quad \text{resp.} \quad \mathfrak{Y}_k := (Y_k, \ldots, Y_{k-n+1})^T, \quad \forall k \in \mathbb{Z}, \quad (4.1) \]

where $X := (X_k)_{k \in \mathbb{Z}}$ and $Y := (Y_k)_{k \in \mathbb{Z}}$ are processes which satisfy a.s.

\[X_k = \alpha(X_{k-1}) + \varepsilon_k, \quad \forall k \in \mathbb{Z}, \quad (4.2) \]

\[Y_k = \beta(X_k) + \varepsilon_k, \quad \forall k \in \mathbb{Z}. \quad (4.3) \]

Thereby, ε_k are defined as in Example 2.1 for any $k \in \mathbb{Z}$, and $\alpha, \beta : \mathcal{H} \rightarrow \mathcal{H}$ are assumed to be integral operators with kernels

\[a(s, t) := k_\varepsilon(s, t) \quad \text{resp.} \quad b(s, t) := 2k_\varepsilon(s, t), \quad \forall s, t \in [0,1], \quad (4.4) \]

where $k_{\varepsilon,0} = k_\varepsilon$ is the integral kernel of $\mathfrak{C}_{\varepsilon,0} = \mathfrak{C}_\varepsilon$ in (2.10). Since the kernel $a(s, t)$ is bounded, we obtain after $||\alpha||_{\mathcal{S}_H} = \int_0^1 \int_0^1 a^2(s, t) \, ds \, dt$ and its definition,

\[||\alpha||_{\mathcal{S}_H} = \sqrt{\frac{3}{2} - \ln(2)}. \quad (4.5) \]

Also, $||\alpha||_{\mathcal{L}_H} \leq ||\alpha||_{\mathcal{S}_H} < 1$ implies that (4.2) has the unique stationary solution

\[X_k = \sum_{j=0}^{\infty} \alpha^j(\varepsilon_{k-j}), \quad \forall k \in \mathbb{Z}, \quad (4.6) \]

where $\alpha^0 := 1_H$ is the identity operator, and where the series converges in L^2_H and a.s., see [5]. Thus $(X_k)_k$ is a stationary, centered L^2_H-valued AR(1) process, and it can be shown it is even L^2_H-m-approximable, see Lemma 2.1 in [30] for functional (G)ARCH processes. Further, due to (4.3), $(Y_k)_k$ is a stationary, centered L^2_H-m-approximable process as well.

After [5], for our AR(1) process X, holds $\mathfrak{C}_{X_0} = \mathfrak{C}_X = \sum_{j=0}^{\infty} \alpha^j \mathfrak{C}_\varepsilon \alpha^j$ with $\mathfrak{C}_{\varepsilon,0} = \mathfrak{C}_\varepsilon$, and $\mathfrak{C}_{X,h} = \alpha^h \mathfrak{C}_X$ for $h \in \mathbb{N}_0$. Further, $\mathfrak{C}_{X,h} = \mathfrak{C}_{X,-h}$ for $h \in \mathbb{Z}$, since $\alpha = \mathfrak{C}_\varepsilon$ is selfadjoint and commutes with \mathfrak{C}_ε, and due to the series representation of \mathfrak{C}_X also with \mathfrak{C}_ε, and $||\alpha||_{\mathcal{S}_H} < 1$ lead to the Neumann series

\[\mathfrak{C}_{X,h} = \alpha^{h+1} \sum_{j=0}^{\infty} \alpha^{2j} = \alpha^{h+1}(I - \alpha^2)^{-1}, \quad \forall h \in \mathbb{Z}. \quad (4.7) \]
Moreover, (4.2), (4.3), Lemma 2.2, and (4.7) yield

\[C_{XY,h} = \beta C_{X,h}, \quad \forall h \in \mathbb{Z}. \]

(4.8)

For the lag-\(h \)-covariance operators \(C_{X,h} = \mathbb{E} \langle X_0, x \rangle_{\mathcal{H}^m} \) and the lag-\(h \)-cross-covariance operators \(C_{XY,h} = \mathbb{E} \langle X_0, x \rangle_{\mathcal{H}^m} \) holds for any \(h \in \mathbb{Z} \) and \(x := (x_1, ..., x_m)^T \in \mathcal{H}^m \),

\[C_{X,h}(x) = \left(\sum_{i=1}^{m} C_{X,h+i-1}(x_i), ..., \sum_{i=1}^{m} C_{X,h+m}(x_i) \right)^T \in \mathcal{H}^m, \quad (4.9) \]

\[C_{XY,h}(x) = \left(\sum_{i=1}^{m} C_{XY,h+i-1}(x_i), ..., \sum_{i=1}^{m} C_{XY,h+m}(x_i) \right)^T \in \mathcal{H}^n. \quad (4.10) \]

Remarks 4.1. For extensive works dealing with functional AR(MA) processes, we refer to [5], [43] and also [16], [1], [7], [8], [34], [18] from a technical point of view, and [10], [25], [40] for methods combined with applications.

4.2 Simulation of realizations of our processes

Hereinafter, we simulate realizations of \((X_k)_k\) and \((Y_k)_k\) in (4.1). To do this, we firstly simulate innovations in (2.9).

These simulated realizations then can be plugged into the equations (4.2) and (4.3) of the underlying AR(1) process \((X_k)_k\) of \((X_k)_k\) and the derived underlying process \((Y_k)_k\) of \((Y_k)_k\). But before we do so, an initial value of \(X_0\) has to be simulated which can be approximated sufficiently well as follows.

Lemma 4.1. Let \(A \in L_{\mathcal{H}} \) with \(\|A\|_{\mathcal{L}_H} < 1 \), let \((\varepsilon_k)_{k \in \mathbb{Z}}\) be an i.i.d., centered \(L_{\mathcal{H}} \)-process for \(\nu > 0 \), and let \(Z_k = A(Z_{k-1}) + \varepsilon_k \) and \(\tilde{Z}_k = A(\tilde{Z}_{k-1}) + \varepsilon_k \) for any \(k \in \mathbb{Z} \) hold, where \(\tilde{Z}_0 \in \mathcal{H} \) is a deterministic value. Then, for some \(\rho \in (0, 1) \),

\[\mathbb{E}\|Z_N - \tilde{Z}_N\|_{\mathcal{H}}^\nu = O(\rho^N). \quad (4.11) \]

Remarks 4.2. Lemma 4.1 can be shown for functional AR(MA) processes with arbitrary order(s) in any separable Hilbert space, see [30], Corollary 4.1 for functional (G)ARCH processes.
4.3 Simulation of our operators

In this section, we illustrate certain lag-h-covariance operators $c_{X,h}$ and lag-h-cross-covariance operators $c_{XY,h}$ of the centered processes $X = (X_k)_h$ and $Y = (Y_k)_h$ in Section 4.2 with Cartesian powers $m = 3$ resp. $n = 2$, and also simulate estimators for these operators for fixed as well as increasing h, m, n.

Due to the infinite series (4.7) consisting of operators, precisely calculating the lag-h-covariance and lag-h-cross-covariance operators $c_{X,h}$ resp. $c_{XY,h}$ of the processes $X = (X_k)_h$ and $Y = (Y_k)_h$ is impossible. However, $c_{X,h}$ and $c_{XY,h}$ can for sufficiently large $K \in \mathbb{N}$ and any $h \in \mathbb{Z}$ be well approximated by

\[
\hat{c}_{X,h;K} := \alpha^{|h|+1} \sum_{j=0}^{K} \alpha^{2j} \quad \text{resp.} \quad \hat{c}_{XY,h;K} := \beta \alpha^{|h|+1} \sum_{j=0}^{K} \alpha^{2j}. \tag{4.12}
\]

This is due to the fact that submultiplicity of $|| \cdot ||_{S,h}, ||\alpha||_{S,h} < 1$ and the formulas of the geometric sum and series lead with $c := (1 - ||\alpha||_{S,h}^{-2})^{-1}$ for any h, K to

\[
||\hat{c}_{X,h;K} - c_{X,h}||_{S,h} < c ||\alpha||_{S,h}^{2K+3} \quad \text{and} \quad ||\hat{c}_{XY,h;K} - c_{XY,h}||_{S,h} < 2c ||\alpha||_{S,h}^{2K+4},
\]

where $\beta = 2\alpha$ after (4.4) was used in the second inequality. Also, the components of $c_{X,h}$ and $c_{XY,h}$ cannot be expressed independently of any argument $x := (x_1, ..., x_m)^T \in H^m$, except when all of the argument’s components match. With $(A_1(x), ..., A_m(x)) := (A_1, ..., A_m)(x)$ for operators $A_1, ..., A_m$ with
domain \(\mathcal{H}^m, \mathcal{C}_{X,h} = \mathcal{C}_{X,-h} \) and \(\mathcal{C}_{Y,h} = \mathcal{C}_{Y,-h} \) for any \(h \), for e.g., \(\mathcal{C}_{X,0} \) and \(\mathcal{C}_{X,-1} \) with \(m = 3, n = 2 \) holds for any \(x = (x, x, x) \in \mathcal{H}^3 \) due to (4.9), (4.10),

\[
\begin{align*}
\mathcal{C}_{X,0}(x) &= \left((\mathcal{C}_{X,0} + \mathcal{C}_{X,1} + \mathcal{C}_{X,2}, \mathcal{C}_{X,0} + \mathcal{C}_{X,1} + \mathcal{C}_{X,2}) (x) \right)^T, \\
\mathcal{C}_{X,-1}(x) &= \left((\mathcal{C}_{X,0} + 2\mathcal{C}_{X,1} + \mathcal{C}_{X,2}) (x) \right)^T.
\end{align*}
\] (4.13) (4.14)

Figure 7: The integral kernels \(k_{X,0} (s,t) \), \(k_{X,0} (s,t) \), \(k_{X,0} (s,t) \) (first row) and \(h_{X,0} (s,t) \), \(h_{X,0} (s,t) \), \(h_{X,0} (s,t) \) (second row) of the operators in the three resp. two components of \(\mathcal{C}_{X,0} \) in (4.13) resp. \(\mathcal{C}_{X,-1} \) in (4.14). These kernels result by the associated sum of the integral kernels \(k_{X,0}, k_{X,1}, k_{X,2} \) and \(k_{Y,0}, k_{Y,1}, k_{Y,2} \) of the operators \(\mathcal{C}_{X,0}, \mathcal{C}_{X,1}, \mathcal{C}_{X,2} \) resp. \(\mathcal{C}_{Y,0}, \mathcal{C}_{Y,1}, \mathcal{C}_{Y,2} \) which were approximated by their respective operators in (4.12) with \(K = 100 \).

In order to illustrate estimators for the operators in the components of \(\mathcal{C}_{X,0}(x) \) in (4.13) and \(\mathcal{C}_{X,-1}(x) \) in (4.14), and to estimate \(\mathcal{C}_{X,h} \) and \(\mathcal{C}_{Y,h} \) for fixed and varying \(h, m, n \) in general, where \(h \geq 0 \) is imposed w.l.o.g., we generate \(X_1, ..., X_M \) and \(Y_1, ..., Y_N \) of the processes \(X \) resp. \(Y \) in Section 4.1 with \(M = N \). This leads to the values \(\mathcal{X}_m, ..., \mathcal{X}_M \) of \(\mathcal{X} \) and \(\mathcal{Y}_n, ..., \mathcal{Y}_N \) of \(\mathcal{Y} \) with \(\mathcal{M} = \mathcal{M}_M = M \) and \(\mathcal{N} = \mathcal{N}_N = M \), thus with \(\mathcal{M} = \mathcal{M} = M - m + 1 \) resp. \(\mathcal{N} = \mathcal{N} = M - n + 1 \). Due to centeredness of \(X \) and \(Y \), the operators \(\mathcal{C}_{X,h} \) in (4.13) and \(\mathcal{C}_{Y,h} \) in (4.14) with \(h = 0, 1, 2 \) are estimated by the classical estimators \(\hat{\mathcal{C}}_{X,h} \) resp. \(\hat{\mathcal{C}}_{Y,h} \) with integral kernels

\[
\begin{align*}
\hat{k}_{X,h}(s,t) &:= \frac{1}{M - h} \sum_{k=1}^{M-h} X_k(s)X_{k+h}(t), \quad \forall s, t \in [0, 1], \\
\hat{k}_{Y,h}(s,t) &:= \frac{1}{M - h} \sum_{k=1}^{M-h} X_k(s)Y_{k+h}(t), \quad \forall s, t \in [0, 1].
\end{align*}
\] (4.15) (4.16)
Figure 8: The estimators $\hat{\mathbf{f}}^{(1)}$, $\hat{\mathbf{f}}^{(2)}$, $\hat{\mathbf{f}}^{(3)}$ (first row) and $\hat{k}^{(1)}_{X,0}$, $\hat{k}^{(2)}_{X,0}$, $\hat{k}^{(3)}_{X,0}$ (second row) for the integral kernels

$\mathbf{f}_{X,0}$, $\mathbf{f}_{X,0}$, $\mathbf{f}_{X,0}$ resp. $k_{X,0}$, $k_{X,0}$, $k_{X,0}$ in (4.16) with $\mathbf{f}_{X,0}$, $\mathbf{f}_{X,0}$, $\mathbf{f}_{X,0}$ in (4.14). These estimators result by the associated sum of the estimators $\hat{h}_{X,0}$, $\hat{h}_{X,1}$, $\hat{h}_{X,2}$ in (4.17) with $M = 1000$ for the operators $\mathbf{f}_{X,0}$, $\mathbf{f}_{X,1}$, $\mathbf{f}_{X,2}$ resp. $\mathbf{f}_{X,0}$, $\mathbf{f}_{X,1}$, $\mathbf{f}_{X,2}$.

Finally, in Table 1, we list estimation errors for the operators $\mathbf{f}_{X,h}$ and $\mathbf{f}_{X,h}$ of the processes $\mathbf{X} := (\mathbf{X}_k)_{k \in \mathbb{Z}}$ and $\mathcal{N} := (\mathcal{N}_k)_{k \in \mathbb{Z}}$ defined in (4.1) for several sample sizes $M = N$ and also various h, m, n which may depend on M, with $h \geq 0$ w.l.o.g. Due to centeredness of \mathbf{X} and \mathcal{N}, as estimators for $\mathbf{f}_{X,h}$ and $\mathbf{f}_{X,h}$, $\mathbf{f}_{X,h}$ in (3.5) resp. $\mathbf{f}_{X,h}$ in (3.9) are used, which, due to our processes’ definition and $h \geq 0$ are represented by

$$\hat{\mathbf{X}}_{h} = \frac{1}{M - h - m + 1} \sum_{k = m}^{M - h} \mathcal{N}_k \otimes \mathcal{N}_{k+h},$$

(4.17) resp.

$$\hat{\mathbf{X}}_{h} = \frac{1}{M - h - \max(m, n-h) + 1} \sum_{k = \max(m, n-h)}^{M - h} \mathcal{N}_k \otimes \mathcal{N}_{k+h}.$$

(4.18)

In order to calculate the estimation errors, the equations

$$||\hat{\mathbf{X}}_{h} - \mathbf{X}_{h}||_{\mathbb{S}_h^m}^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} ||\hat{\mathbf{X}}_{h+i-j} - \mathbf{X}_{h+i-j}||_{\mathbb{S}_h^m}^2,$$

(4.19)

$$||\hat{\mathbf{X}}_{h} - \mathbf{X}_{h}||_{\mathbb{S}_{h(m,n)}}^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} ||\hat{\mathbf{X}}_{h+i-j} - \mathbf{X}_{h+i-j}||_{\mathbb{S}_{h(m,n)}}^2.$$

(4.20)

are utilized, where $\hat{\mathbf{X}}_{h+i-j}$ and $\hat{\mathbf{X}}_{h+i-j}$ equal $\hat{\mathbf{X}}_{h}$ in (4.17) resp. $\hat{\mathbf{X}}_{h}$ in (4.18) with \mathcal{N}_k, \mathcal{N}_{k+h} and \mathcal{N}_{k+h} replaced by X_{k+i-j}, X_{k+i-j} resp. Y_{k+i-j} for all i, j. Thereby, the equations (4.19) and (4.20) follow from the definition of the given norms and operators (see also (4.9), (4.10)).
Table 1: Simulation of $||\hat{C}_{X,h} - C_{X,h}||_{S_{H^m}}^2$ in (4.19), $||\hat{C}_{X,Y,h} - C_{X,Y,h}||_{S_{H^m,H^n}}^2$ in (4.20) for various sample sizes M, lags h and Cartesian powers m,n, with $C_{X,h+i-j}$ and $C_{X,Y,h+i-j}$ approximated by $\hat{C}_{X,h+i-j;100}$ resp. $\hat{C}_{X,Y,h+i-j;100}$ in (4.12).

Remarks 4.3. All parameters in the simulation study with estimation errors in Table 1 are chosen so that the prerequisites of Theorems 3.1 and 3.3 are satisfied. These errors run for growing sample size M or as the asymptotic upper bounds in Theorems 3.1 and 3.3. Up to $M = 200$, probably due to fortunate random errors, the calculated errors decrease for fixed resp. increase for increasing $m = nM$ and any $h = h_M$ as expected. That the errors for increasing $m = nM, n = nM$ not yet visibly approach zero could be because M is either too small, or that small values of the estimators or the operators to be estimated are rounded to zero, leading to larger estimation errors. Also, the estimation errors for the lag-h-cross-covariance are smaller as for the lag-h-covariance operators due to their definiton.

5 Conclusions

This article proposes estimators for lagged covariance and cross-covariance operators and the principle components of (lag-0-)covariance operators of processes with values in (Cartesian products of) separable Hilbert spaces where the focus lies on the asymptotic upper bounds of the estimation errors. All estimators are stated for centered processes and for those with an unknown mean. The asymptotic upper bounds allow both the processes’ Cartesian powers and the lag to be fixed or to increase w.r.t. the sample size, and the principle components are estimated individually as well as uniformly. Our findings are useful whenever one is concerned about the dependence within one or between two processes having values in (Cartesian products of) Hilbert spaces, or one has to derive asymptotic upper bounds of estimation errors where the given estimators rely on empirical (lagged) covariance or cross-covariance operators, see [2], [30] for latter. These findings can also be applied to covariance and cross-covariance operators of random variables in separable Hilbert spaces, and since \mathbb{R}^n endowed with the canonical inner product is a separable Hilbert space for any $n \in \mathbb{N}$, also to conventional (lagged) covariance and cross-covariance matrices.

It would be interesting to deduce our results also on separable Banach spaces, see, e.g., [39] who dealt with the estimation of AR operators in Banach spaces, to derive the asymptotic distribution of our estimation errors (see [36]) as well as their asymptotic lower bounds.
6 Proofs

Proof of Lemma 2.1. See [5], and [22], sections 7.2-7.3.

Proof of Lemma 2.2. Both parts follow from the definition of the lag-h-(cross-)covariance operators and elementary conversions, where the assertion regarding independence in (a) holds due to (2.4).

Proof of Lemma 3.1. \hat{m} is an unbiased estimator for m due to its definition. $X = (X_k)_k$ and $\mathcal{X} = (\mathcal{X}_k)_k$ are stationary, and X_{1+h}, X_{1+h+h} are independent for all h. Thus, similar to [20], due to $m = (m_1, ..., m_X)_T \in \mathbb{U}^m$, (2.4), Cauchy-Schwarz inequality, $\mathcal{Z}_k := \mathcal{X}_k - \hat{m}$ and $Z_k := X_k - m$ for any k, holds with $\mathcal{M} = \mathcal{M}_M, \mathcal{M} = \mathcal{M}$ in Assumption 3.1:

$$E||\hat{m} - m||_{U^m}^2 = m.\mathcal{M}^{-2} \sum_{i,j=m} \mathcal{M}^{-1} E(\mathcal{Z}_i, \mathcal{Z}_j)_U + 2 \sum_{h=1}^{\mathcal{M}^{-1}} \mathcal{M}^{-2} E(Z_1, X_{1+h} - X_{1+h+h})_U$$

$$\leq m.\mathcal{M}^{-1} \sum_{h=1}^{\mathcal{M}^{-1}} E(Z_1, X_{1+h} - X_{1+h+h})_U$$

$$= O(m.\mathcal{M}^{-1}) = O(m.\mathcal{M}^{-1})$$

where the last two steps hold due to L_{4}^1-approximability of $(X_k)_k$ and (3.3). □

In various conversions when derivating the upper bounds of the estimation errors for our operators, we use the following two Lemmas.

Lemma 6.1. Let $(H, || \cdot ||_H)$ be a separable Hilbert space. Also, let $(S_k)_{k \in \mathbb{Z}}$ be a stationary L_{4}^1-process, and for some $l \in \mathbb{N}$, $\mathcal{K}_k := (S_{j+k,l})_k$ for all k and some function $f : \mathbb{Z} \times \{1, ..., l\} \rightarrow \mathbb{Z}$. Then,

$$\nu_{4,4}(\mathcal{K}_k) \leq \sqrt{l} \nu_{4,4}(S)) \quad \forall j, k.$$ \hspace{1cm} (6.1)

Proof. From the definition of \mathcal{K}_k and $\nu_{4,4}(\cdot)$, from stationarity of the L_{4}^1-process $(S_k)_k$ and Cauchy-Schwarz inequality follows

$$\nu_{4,4}(\mathcal{K}_k) = E\left[\left(\sum_{m=1}^{l} ||S_{j+k,m}||_{H}^2 \right)^2 \right] \leq \sum_{m,n=1}^{l} E||S_{j+k,m}||_{H}^4 = l^2 \nu_{4,4}(S)) \quad . \hspace{1cm} \Box$$

Lemma 6.2. Let Assumption 3.1 hold. Moreover, we define $\mathcal{K}_{m+l} := (X_{m+l+1}, ..., X_1)$ and $\mathcal{Y}_{m+l} := (Y_{n+q+l+1}, ..., Y_1)$ for any j, l, m, n, p, q.

(a) The processes $(\mathcal{K}_k)_{k \in \mathbb{Z}}$ and $(\mathcal{Y}_k)_{k \in \mathbb{Z}}$ satisfy

$$\sum_{k=1}^{\infty} \nu_{4,4}(\mathcal{K}_k - \mathcal{K}_{k-1}) < \infty \quad \text{ resp. } \quad \sum_{k=1}^{\infty} \nu_{4,4}(\mathcal{Y}_k - \mathcal{Y}_{k-1}) < \infty. \hspace{1cm} (6.2)$$

Thereby, (\mathcal{K}_k) is L_{4}^1-m-approximable for $p = 1$, and (\mathcal{Y}_k) is L_{4}^1-m-approximable for $q = 1$.

(b) For the process $(\mathcal{X}_k, h)_{k \in \mathbb{Z}}$, with $h \in \mathbb{Z}$ and $\mathcal{X}_k, h := X_{k+l} \otimes Y_{k+l}$, holds with $\mathcal{X}_{k, h} := \mathcal{X}_k \otimes Y_{k+l}$:

$$\sum_{k=1}^{\infty} \nu_{2,4}(\mathcal{K}_k - \mathcal{K}_{k-1}) \leq \sqrt{mn} \left[\sum_{k=1}^{\infty} \nu_{4,4}(Y_{1} \nu_{4,4}(X_{k} - X_{k-1}) + \nu_{4,4}(X_{1} \nu_{4,4}(Y_{k} - Y_{k-1})) \right]. \hspace{1cm} (6.3)$$

Moreover, (\mathcal{Y}_{k+h}) is L_{4}^1-m-approximable for $h \leq 0$ if $p = q = 1$.
Proof. (a) From the definition of $\mathcal{X}_k, \mathcal{X}_{k,h}, \mathcal{Y}_k, \mathcal{Y}_{k,h}$ for all k follows $\nu_{4,4U}(\mathcal{X}_k - \mathcal{X}_{k,h}) \leq \sqrt{m} \nu_{4,4U}(X_k - X_{k,h})$ and $\nu_{4,4\mathcal{V}}(\mathcal{Y}_k - \mathcal{Y}_{k,h}) \leq \sqrt{m} \nu_{4,4\mathcal{V}}(Y_k - Y_{k,h})$, and thus (6.2). Hence, since $(\mathcal{X}_k)_k$ and $(\mathcal{Y}_k)_k$ are non-anticipative w.r.t. $(\varepsilon_k)_k$ for $p = 1$ resp. $q = 1$, $(\mathcal{X}_k)_k$ and $(\mathcal{Y}_k)_k$ are $L^{4,m}_{\nu_{4,\mathcal{V}},m}$-approximable.

(b) Bilinearity of $\otimes: \mathcal{U}^m \times \mathcal{V}^n \to \mathcal{V}^n$, Minkowski inequality, $\|u \otimes v\|_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}} = \|u\|_{\mathcal{U}^m} \cdot \|v\|_{\mathcal{V}^n}$ for $u \in \mathcal{U}^m, v \in \mathcal{V}^n$, Cauchy-Schwarz inequality and (6.1) yield

$$\begin{align*}
\sum_{k=1}^{\infty} \nu_{2,\mathcal{S}_{\nu_{4,\mathcal{V}},m}}(\mathcal{W}_{k,h} - \mathcal{W}_{k,h,k}) &\leq \sum_{k=1}^{\infty} \nu_{2,\mathcal{S}_{\nu_{4,\mathcal{V}},m}}((\mathcal{X}_k - \mathcal{X}_{k,h}) \otimes (\mathcal{Y}_k + \mathcal{Y}_{k,h})) + \nu_{2,\mathcal{S}_{\nu_{4,\mathcal{V}},m}}((\mathcal{X}_k + \mathcal{X}_{k,h}) \otimes (\mathcal{Y}_k - \mathcal{Y}_{k,h})) \\
&\leq \sum_{k=1}^{\infty} \nu_{4,4U}(\mathcal{X}_k - \mathcal{X}_{k,h}) \nu_{4,4\mathcal{V}}(\mathcal{Y}_k + \mathcal{Y}_{k,h}) + \nu_{4,4U}(\mathcal{X}_k + \mathcal{X}_{k,h}) \nu_{4,4\mathcal{V}}(\mathcal{Y}_k - \mathcal{Y}_{k,h}) \\
&\leq \sqrt{m} \nu_{4,4U}(\mathcal{Y}_k)(\mathcal{X}_k - X_{k,h}) + \nu_{4,4U}(\mathcal{X}_k)(\mathcal{Y}_k - Y_{k,h})
\end{align*}$$

This is finite due to $L^{4,m}$-approximability of $(X_k)_k$ and $(Y_k)_k$. Moreover, since $(\mathcal{X}_k)_k, (\mathcal{Y}_k)_k$ and thus $(\mathcal{W}_{k,h})_k$ are non-anticipative w.r.t. $(\varepsilon_k)_k$ for $h \leq 0$ if $p = q = 1$, $(\mathcal{W}_{k,h})_k$ is indeed $L^{3,m}_{\nu_{4,\mathcal{V}},m}-$approximable for $h \leq 0$ if $p = q = 1$.

Proof of Theorem 3.1. We use ideas from the proof of [21]. Theorem 3.1, $\hat{C}_{x,h}$ is an unbiased estimator for $C_{x,h}$ with $|h| < M = M_M$ due to its definition. Since $\|\hat{C}_{x,h} - C_{x,h}\|_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}} = \|\hat{C}_{x,h} - C_{x,h}\|_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}}$ for all h, we show (3.6) for $h \geq 0$ w.l.o.g. Stationarity of \mathcal{X} implies for any h with $0 \leq h < M_M$ where $\mathcal{X}_{k,h} := \mathcal{W}_{k,h} - \mathcal{C}_{x,h}$ with $\mathcal{W}_{k,h} := \mathcal{X}_k \otimes \mathcal{X}_{k,h}$, and $\mathcal{M}_M = M_M - |h|:

$$E\|C_{x,h} - \hat{C}_{x,h}\|^2_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}} = \mathcal{M}_M^{-2} \mathcal{M}_M^{-1} \sum\{\mathcal{M}_M - |r|\} E(\mathcal{X}_{m,h}, \mathcal{X}_{m+r,h})_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}} \leq 2 \mathcal{M}_M^{-1} \sum\{\mathcal{X}_{m,h}, \mathcal{X}_{m+r,h}\}_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}}. \tag{6.4}$$

Let $\sigma(T_k, k \in I)$ be the σ-algebra generated by the random variables T_k with $k \in I$ where $I \subseteq Z$ is some index set. From Assumption 3.1 (a), the definition of \mathcal{X}_k for any k for some $p \in \mathbb{N}$, and of $\mathcal{W}_{k,h}$ for any h, k follows for $h \geq 0$:

$$\mathcal{X}_{m,h} = \mathcal{W}_{m,h} - \mathcal{C}_{x,h} \in \sigma(X_1, \ldots, X_m, X_{1+h, p}, \ldots, X_{m+h, p}) \subseteq \sigma(\varepsilon_{m+h, p}, \varepsilon_{m+h, p-1}, \ldots)$$

where $(\varepsilon_k)_k$ is an i.i.d. process, and for any $r \in \mathbb{N}$,

$$\mathcal{X}_{m+r,h} = \mathcal{W}_{m+r,h} - \mathcal{C}_{x,h} \in \sigma(\varepsilon_{m+(h+r), p}, \varepsilon_{m+(h+r), p-1}, \ldots).$$

Consequently, $\mathcal{X}_{m,h}$ and $\mathcal{X}_{m+r,h}\otimes r - h := \mathcal{W}_{m+r,h\otimes r - h} - \mathcal{C}_{x,h}$ with $\mathcal{W}_{m+r,h\otimes r - h} = \mathcal{W}_{m+r,h\otimes r - h} \otimes \mathcal{W}_{m+r,h\otimes r - h}$ (see Lemma 6.2 with $\mathcal{Y}_k = \mathcal{X}_k, \mathcal{Y}_{k,l} = \mathcal{X}_{k,l}$) are independent for $r > h$ for any m, p. With that being said, and since $\mathcal{X}_{m,h}$ and $\mathcal{X}_{m+r,h\otimes r - h}$ are centered for all h, k, r, Cauchy-Schwarz inequality, (2.4) and Lemma 6.2 with $\mathcal{Y}_k = \mathcal{X}_k, \mathcal{Y}_{k,l} = \mathcal{X}_{k,l}$ for all k, l, yield for the sum in (6.4):

$$\begin{align*}
\sum_{r=0}^{\infty} E(\mathcal{X}_{m,h}, \mathcal{X}_{m+r,h})_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}} &= \sum_{r=0}^{h} E(\mathcal{X}_{m,h}, \mathcal{X}_{m+r,h})_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}} + \sum_{r>h} E(\mathcal{X}_{m,h}, \mathcal{W}_{m+r,h} - \mathcal{W}_{m+r,h\otimes r - h})_{\mathcal{S}_{\nu_{4,\mathcal{V}},m}} \\
&\leq \nu_{2,\mathcal{S}_{\nu_{4,\mathcal{V}},m}}(\mathcal{X}_{m,h}) \left[(1+h) \nu_{2,\mathcal{S}_{\nu_{4,\mathcal{V}},m}}(\mathcal{X}_{m,h}) + \sum_{k=1}^{\infty} \nu_{2,\mathcal{S}_{\nu_{4,\mathcal{V}},m}}(\mathcal{W}_{k,h} - \mathcal{W}_{k,h,k})\right]
\end{align*} \tag{6.5}$$
\[\leq \nu_{2,S_t+}\left(\mathcal{F}_{t,h}\right) \left[(1+h)\nu_{2,S_t+}\left(\mathcal{F}_{t,h}\right) + 2m\nu_{4,t}(X_m) \sum_{k=1}^{\infty} \nu_{4,t}(X_k - X_{k,k}) \right]. \]

(6.6)

\[\nu_{2,S_t+}\left(\mathcal{F}_{t,h}\right) = E[\|\mathcal{F}_{t,h}\|_{S_t+}^2] - \|\mathcal{W}_{t,h}\|_{S_t+}^2 \text{ after (22), Theorem 7.2.2, and } \|\mathcal{W}_{t,h}\|_{S_t+}^2 = \|\mathcal{F}_{t,h}\|_{t+}^2 \|\mathcal{F}_{t+m+1}\|_{t+m+1}^2. \text{ Hence, (2.3), } ||\mathcal{W}_{t,h}||_{S_t+} \leq ||\mathcal{W}_{t,h}||_{t+} ||\mathcal{F}_{t+m+1}||_{t+m+1}. \]

Cauchy-Schwarz inequality, stationarity of \((\mathcal{F}_{t,h})_k\) and (6.1) yield

\[\nu_{2,S_t+}\left(\mathcal{F}_{t,h}\right) \leq 2E[\|\mathcal{F}_{t,h}\|_{t+}^2] \leq 2m^2\nu_{4,t}(X_1). \]

(6.7)

From (6.4), (6.6), (6.7) and \(L_t^2\)-m-approximability of \((\mathcal{F}_{t,h})\) follows

\[E[\mathcal{E}_{\mathcal{F}_{t,h}} - \mathcal{E}_{\mathcal{H}_{t,h}}]||_{S_t+}^2 \leq a(1+h)m^2\mathcal{M}^{-1}. \]

for some constant \(a\) independent of \(h = h_M, m = m_M, p = p_M\) in Assumption 3.2 (a) and thus also of \(\mathcal{M}_M = \mathcal{M} - |h|\) with \(\mathcal{M}_M \sim p^{-1}M\) after Assumption 3.3 (a) and (3.3). Hence, (3.6) is verified. \(\square\)

Proof of Theorem 3.2. From stationarity of \(\mathcal{F}_{t} = (\mathcal{F}_{t,h})_k\) and bilinearity of \(\otimes: \mathcal{U}^m \times \mathcal{U}^m \rightarrow \mathcal{U}^m\) follows for \(h\) with \(0 \leq h < \mathcal{M} - 1\) and \(\mathcal{M}_M = \mathcal{M} - |h|\):

\[E[\mathcal{E}_{\mathcal{F}_{t,h}}] = \frac{1}{\mathcal{M}_M - 1} \sum_{i=1}^{\mathcal{M}_M} E\left(\left(\mathcal{F}_{t-k} - \frac{1}{\mathcal{M}_M} \sum_{i=1}^{\mathcal{M}_M} \mathcal{F}_{t-i}\right) \otimes (\mathcal{F}_{t+k} - \frac{1}{\mathcal{M}_M} \sum_{j=1}^{\mathcal{M}_M} \mathcal{F}_{t+j})\right) \]

\[= \frac{1}{\mathcal{M}_M - 1} \left(\mathcal{M}_M^2 \mathcal{E}_{\mathcal{H}_{t,h}} - \sum_{i=1}^{\mathcal{M}_M} \mathcal{E}_{\mathcal{H}_{t+k-i}}\right) \]

\[= \mathcal{E}_{\mathcal{F}_{t,h}} - \frac{1}{\mathcal{M}_M - 1} \sum_{1 \leq k \leq \mathcal{M}_M} \mathcal{E}_{\mathcal{H}_{t+k-i}}. \]

(6.8)

Hence, \(\mathcal{E}_{\mathcal{F}_{t,h}}\) is an unbiased estimator for \(\mathcal{E}_{\mathcal{H}_{t,h}}\) for \(h\) with \(0 \leq h < \mathcal{M} - 1\) if the sum in (6.8) equals 0 for all \(h \geq 0\) w.l.o.g. For \(h < \mathcal{M} - 1\) holds

\[\mathcal{E}_{\mathcal{F}_{t,h}} = \frac{\mathcal{M}_M}{\mathcal{M}_M - 1} \left(\mathcal{M}_M \mathcal{E}_{\mathcal{H}_{t,h}} - \sum_{j=m}^{\mathcal{M}_M} \mathcal{U}_k \otimes \mathcal{U}_{k+h}\right) \]

\[= \frac{\mathcal{M}_M}{\mathcal{M}_M - 1} \left[(m_{\mathcal{F}_{t,h}} - \hat{m}_{\mathcal{F}_{t,h}}) \otimes (m_{\mathcal{F}_{t,h}} - \hat{m}_{\mathcal{F}_{t,h}}) + \mathcal{E}_{\mathcal{H}_{t,h}}\right] \]

(6.9)

with \(\mathcal{E}_{\mathcal{F}_{t,h}}\) as in (3.5) based on a sample \(\mathcal{U}_{m,\ldots,\mathcal{U}_{M_M}}\) of \(\mathcal{W} := (\mathcal{W}_k)_{k \in \mathbb{Z}}\) where \(\mathcal{U}_k := \mathcal{F}_{t-k} - m_{\mathcal{F}_{t}}\). (6.9), \(\mathcal{E}_{\mathcal{H}_{t,h}} = \mathcal{E}_{\mathcal{H}_{t,h}}\), \(\Delta\)-inequality, \((a + b + c)^2 \leq 3(a^2 + b^2 + c^2)\) for \(a, b, c \in \mathbb{R}\) and \(||u \otimes u'|| ||_{S_{t+}} = ||u||_{t+} ||u'||_{t+}\) for \(u, u' \in \mathcal{U}^m\) yield

\[\mathcal{E}_{\mathcal{F}_{t,h}} - \mathcal{E}_{\mathcal{H}_{t,h}} ||_{S_{t+}}^2 = \left[1 - \frac{1}{\mathcal{M}_M - 1} \left[(m_{\mathcal{F}_{t,h}} - \hat{m}_{\mathcal{F}_{t,h}}) \otimes (m_{\mathcal{F}_{t,h}} - \hat{m}_{\mathcal{F}_{t,h}}) + \mathcal{E}_{\mathcal{H}_{t,h}}\right] \right] \]

\[\leq \frac{3}{(\mathcal{M}_M - 1)^2} \left[\mathcal{M}_M^2 ||\hat{m}_{\mathcal{F}_{t,h}} - m_{\mathcal{F}_{t,h}}||_{t+}^2 + ||m_{\mathcal{F}_{t,h}} - m_{\mathcal{F}_{t,h}}||_{t+}^2 \right] \]

\[+ \mathcal{M}_M^2 ||\hat{m}_{\mathcal{F}_{t,h}} - m_{\mathcal{F}_{t,h}}||_{t+}^2 + ||\mathcal{E}_{\mathcal{H}_{t,h}}||_{t+}^2 \]

We have \(||\hat{m}_{\mathcal{F}_{t,h}} - m_{\mathcal{F}_{t,h}}||_{t+}^2 \leq (1+h)m^2pM^{-1}\) after Lemma 3.1, \(||\mathcal{E}_{\mathcal{H}_{t,h}}||_{t+}^2 \leq (1+h)m^2pM^{-1}\) after Theorem 3.1, and \(||\mathcal{E}_{\mathcal{H}_{t,h}}||_{t+}^2 \leq m^2E||X_1||_{t+}^2\) due to \(||\mathcal{S}_{t+}|| \leq ||\mathcal{S}_{t+}||_{N_{t+}}\) in (2.3), Cauchy-Schwarz inequality and (6.1). Then, under Assumptions 3.1-3.3 (a), thus \(\mathcal{M}_M \sim p^{-1}M\) after (3.3), and

\[||\mathcal{E}_{\mathcal{F}_{t,h}} - \mathcal{E}_{\mathcal{H}_{t,h}}||_{S_{t+}}^2 = O(p^2m^2\mathcal{M}^{-2}) + O((1+h)m^2pM^{-1}) + O(m^2\mathcal{M}^{-2}). \]
proof of theorem 3.3. \(\hat{\mathcal{C}}_{\mathcal{X},h} \) is an unbiased estimator for \(\mathcal{C}_{\mathcal{X},h} \) for \(h \) with \(n - M \leq h \leq N - m \) by definition. From deliberations in the proof of theorem 3.1, especially (6.4) and (6.5) with \(\mathcal{Z}_{k,h} := \mathcal{W}_{k} - \mathcal{C}_{\mathcal{X},h} \) and \(\mathcal{W}_{k,h} := \mathcal{X}_{k} \otimes \mathcal{W}_{k+h} \),

\[\nu_{2,\mathcal{S}_{\mu_2}^{m,n}}(\mathcal{Z}_{1,h}) \leq 2 \left(\mathbb{E} ||\mathcal{S}_{\mu_2}^{m,n}||_{\mathbb{E}} ||\mathcal{S}_{\mu_2}^{m,n}||_{\mathbb{H}} \right)^{1/2} \leq 2mn\nu_{2,\mathcal{S}_{\mu_2}^{m,n}}^{2}(X_{1})\nu_{2,\mu_{1}}^{2}(Y_{1}) \]

(6.10) similar as in (6.7), and lemma 6.2 follows

\[\mathbb{E}||\hat{\mathcal{C}}_{\mathcal{X},h} - \mathcal{C}_{\mathcal{X},h}||^{2}_{\mathcal{S}_{\mu_2}^{m,n}} \]

\[\leq 2\mathcal{L}_{M,N,h}^{-1}\nu_{2,\mathcal{S}_{\mu_2}^{m,n}}(\mathcal{Z}_{1,h}) \left[(1+h)\nu_{2,\mathcal{S}_{\mu_2}^{m,n}}(\mathcal{Z}_{1,h}) + \sum_{k=1}^{\infty} \nu_{2,\mathcal{S}_{\mu_2}^{m,n}}(\mathcal{W}_{k} - \mathcal{W}_{k,h}) \right] \]

\[\leq 2\sqrt{2}mn\mathcal{L}_{M,N,h}^{-1}\nu_{4,\mathcal{S}_{\mu_2}^{m,n}}(X_{1})\nu_{4,\mu_{1}}(Y_{1}) \]

\[\cdot \left[\sqrt{2}(1+h)\nu_{4,\mathcal{S}_{\mu_2}^{m,n}}(\mathcal{W}_{k}) + \sum_{k=1}^{\infty} \nu_{4,\mu_{1}}(Y_{1})\nu_{4,\mathcal{S}_{\mu_2}^{m,n}}(X_{k} - (k+1)) + \nu_{4,\mathcal{S}_{\mu_2}^{m,n}}(X_{k})\nu_{4,\mu_{1}}(Y_{k} - Y_{k}) \right] \]

\[\leq b(1+h)mn\mathcal{L}_{M,N,h}^{-1} \]

(6.11) for some constant \(b \) independent of \(M, N, \) and thus of all given sequences.

proof of theorem 3.4. For \(h \) with \(n - M \leq h \leq N - m \) holds

\[\mathbb{E}(\hat{\mathcal{C}}_{\mathcal{X},h} - \mathcal{C}_{\mathcal{X},h}) = \hat{\mathcal{C}}_{\mathcal{X},h} - \frac{1}{\mathcal{L}_{M,N,h}(\mathcal{L}_{M,N,h}^{-1})} \sum_{1 \leq i,k \leq \mathcal{L}_{M,N,h}^{-1}} \mathcal{C}_{\mathcal{X},h+i-h} \]

similar as in the proof of theorem 3.2. Thus, \(\hat{\mathcal{C}}_{\mathcal{X},h} \) is an unbiased estimator for \(\mathcal{C}_{\mathcal{X},h} \) for these \(h \) if the sum above is \(0_{\mathcal{S}_{\mu_2}^{m,n}} \). Moreover, as in theorem 3.2,

\[\hat{\mathcal{C}}_{\mathcal{X},h} = \frac{\mathcal{L}_{M,N,h}}{\mathcal{L}_{M,N,h}^{-1}} \left[(m_{\mathcal{X}} - \hat{m}_{\mathcal{X}}) \otimes (m_{\mathcal{X}} - \hat{m}_{\mathcal{X}}) + \mathcal{C}_{\mathcal{X},h} \right] \]

with \(\mathcal{C}_{\mathcal{X},h} \) defined in (3.9) based on samples \(\mathcal{U}_{m}, \ldots, \mathcal{U}_{m} \) of \(\mathcal{U} := (\mathcal{U}_{k})_{k \in \mathbb{Z}} \) and \(\mathcal{V}_{n}, \ldots, \mathcal{V}_{n} \) of \(\mathcal{Y} := (\mathcal{V}_{k})_{k \in \mathbb{Z}} \) with \(\mathcal{U}_{k} := \mathcal{X}_{k} - m_{\mathcal{X}} \) resp. \(\mathcal{V}_{k} := \mathcal{X}_{k} - m_{\mathcal{X}} \). Arguments in the proofs of theorems 3.2-3.3 imply together with the assertions of lemma 3.1, theorem 3.3, (2.3), (6.10) and \(\mathcal{C}_{\mathcal{X},h} = \mathcal{C}_{\mathcal{X},h} \) as claimed:

\[||\hat{\mathcal{C}}_{\mathcal{X},h} - \mathcal{C}_{\mathcal{X},h}||^{2}_{\mathcal{S}_{\mu_2}^{m,n}} \leq \frac{3}{(\mathcal{L}_{M,N,h}^{-1})^{2}} \left[\mathcal{L}_{M,N,h}^{2} ||\hat{m}_{\mathcal{X}} - m_{\mathcal{X}}||^{2}_{\mathcal{S}_{\mu_2}^{m,n}} + ||\mathcal{C}_{\mathcal{X},h}||^{2}_{\mathcal{S}_{\mu_2}^{m,n}} \right] \]

\[= O_{P}(mn\mathcal{L}_{M,N,h}^{-2}) + O_{P}((1+|h|)mn\mathcal{L}_{M,N,h}^{-2}) + O(mn\mathcal{L}_{M,N,h}^{-2}) \]

Corollary 3.1. Follows from (3.14), \(\cdot ||\mathcal{L}_{\mu_2}^{m} \leq ||\cdot ||_{\mathcal{S}_{\mu_2}^{m}} \) and theorems 3.1-3.2 with \(h = 0 \).

proof of lemma 3.2. The assertions are a consequence of (3.20) as well as theorems 3.1-3.2 with \(h = 0 \), where (3.25) and (3.27) also include (3.23).
Proof of Theorem 3.5. From the definition of $\hat{\xi}^i_j$ in (3.16) follows

$$
(\hat{\xi}^i_j, \xi_j)_{U^m}(\hat{\xi}^i_j, \xi_j)_{U^m} = 1 - ||\hat{\xi}^i_j - \xi_j||_{U^m}^2 + \frac{1}{4} ||\hat{\xi}^i_j - \xi_j||_{U^m}^4 + (\hat{\xi}^i_j, \xi_j)_{U^m} \sum_{i=1}^{\infty} \frac{\xi_i(u_i, \xi_j)_{U^m}}{i^2 M}
$$

where for the last term holds due to independence of given random variables, $E|(|\hat{\xi}^i_j, \xi_j)_{U^m}| \leq 1, \xi_i \sim \mathcal{N}(0, 1)$ for all i and the monotone convergence theorem:

$$
E \left[(\hat{\xi}^i_j, \xi_j)_{U^m} \right] = \sum_{i=1}^{\infty} \frac{|(u_i, \xi_j)_{U^m}| E[|\xi_i|]}{i^2 M} = O(M^{-1}).
$$

Thus, with (3.28) and $1 - \text{sgn}(1 + X_n) = o(a_n)$ for real-valued processes $(X_n)_n$ with $X_n = o_P(1)$ and real-valued zero sequences $(a_n)_n$, for any j indeed holds

$$
||\hat{\xi}^i_j - \xi_j||_{U^m}^2 = ||\hat{\xi}^i_j - \xi_j||_{U^m}^2 + 2\left[1 - \text{sgn}(\hat{\xi}^i_j, \xi_j)_{U^m}(\hat{\xi}^i_j, \xi_j)_{U^m}\right]
$$

$$
= O_P(\gamma_{j,m}^2) + 2\left[1 - \text{sgn}(1 + O_P(\gamma_{j,m}^2)) + O_P(\gamma_{j,m}^4)\right] = O_P(\gamma_{j,m}^2).
$$

Similarly, with (3.25), we also obtain

$$
\sup_{j \leq k} ||\hat{\xi}^i_j - \xi_j||_{U^m}^2 \leq \sup_{j \leq k} ||\hat{\xi}^i_j - \xi_j||_{U^m}^2 + 2\left[1 - \text{sgn}(\hat{\xi}^i_j, \xi_j)_{U^m}(\hat{\xi}^i_j, \xi_j)_{U^m}\right]
$$

$$
= O_P(m^2 P^{-1}).
$$

Moreover, due to the definition of $\hat{\xi}^i_j$ in (3.16),

$$
E \left[1 - (\hat{\xi}^i_j, \xi_j)_{U^m}(\hat{\xi}^i_j, \xi_j)_{U^m} \right] \leq E||\hat{\xi}^i_j - \xi_j||_{U^m}^2 + E \left[(\hat{\xi}^i_j, \xi_j)_{U^m} \right] \sum_{i=1}^{\infty} \frac{|\xi_i(u_i, \xi_j)_{U^m}|}{i^2 M}
$$

$$
= O(m^2 P^{-1}).
$$

Thus, for any j holds due to the definition of $\hat{\xi}^i_j$ and $\hat{\xi}^i_j$, and because of (3.26):

$$
E||\hat{\xi}^i_j - \xi_j||_{U^m}^2 \leq 2 E||\hat{\xi}^i_j - \xi_j||_{U^m}^2 + 2 E \left[(\text{sgn}(\hat{\xi}^i_j, \xi_j)_{U^m} - \text{sgn}(\hat{\xi}^i_j, \xi_j)_{U^m})^2 \right]
$$

$$
\leq O(m^2 P^{-1}) + 4 P \left(\text{sgn}(\hat{\xi}^i_j, \xi_j)_{U^m} > 1/2 \right)
$$

$$
= O(m^2 P^{-1}).
$$

Hence, (3.30) is verified, and a similar procedure leads with (3.27) to (3.31). \qed

Proof of Lemma 4.1. The definition of Z_N and \hat{Z}_N for any $N \in \mathbb{N}$ yields $Z_N - \hat{Z}_N = A^N(Z_0 - \hat{Z}_0)$, and submultiplicity of the operator norm thus

$$
E||Z_N - \hat{Z}_N||_{H^N}^2 \leq ||A||_{H^N}^N E||Z_0 - \hat{Z}_0||_{H}^N.
$$

Since $(Z_k)_{k \in \mathbb{Z}},(\hat{Z}_k)_{k \in \mathbb{Z}}$ are $L^2_{K^i}$-processes because $(\xi_k)_{k \in \mathbb{Z}}$ is one and due to the definition of Z_k and \hat{Z}_k for all k, the expected value on the right is finite. Thus, by choosing $\rho = ||A||_{H}^N$ and because $||A||_{H} < 1$, the assertion is proven. \qed

Acknowledgements

I thank Alexander Meister (University of Rostock), Siegfried Hörmann (Graz University of Technology), Gregory Rice (University of Waterloo), Piotr Kokoszka (Colorado State University) and Dominik Liebl (University of Bonn) for valuable comments, and Leo Evans for proof-reading.
References

