Preprint
Article

Bio-Resorption Control and Biological Response of Magnesium Alloy AZ31 Coated with Poly-β-hydroxybutyrate

Submitted:

09 May 2021

Posted:

10 May 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Magnesium and its alloys are not normally used as bio-resorbable temporary implants due to their high and uncontrolled degradation rate in physiological liquid environment. The improvement of corrosion resistance to simulated body fluids (SBF) of a Magnesium alloy (AZ31) coated with poly-β-hydroxybutyrate (PHB) was investigated. Scanning electron microscopy, Fourier transform infrared spectrometer, and contact angle measurements were used to characterize surface morphology, material composition and wettability, respectively. pH modification of the SBF corroding medium, mass of Mg2+ ions released, and weight loss of the samples exposed to the SBF solution, and electrochemical experiment were used to describe the corrosion process and its kinetics. Materials biocompatibility was described by evaluating the effect of corrosion by products collected in the SBF equilibrating solution on hemolysis ratio, cytotoxicity, Nitric Oxide (NO), and total antioxidant capacity (T-AOC). The results showed that the PHB coating can diffusively control the degradation rate of Magnesium alloy improving its biocompatibility: hemolysis rate of materials was lower than 5%, while in vitro Human Umbilical Vein Endothelial Cells(HUVECs) compatibility experiments showed that PHB coated Mg alloy promoted cell proliferation and had no effect on the NO content, the T-AOC was enhanced compared with the normal group and bare AZ31 alloy. PHB coated AZ31 Magnesium alloy extraction fluids have a less toxic behavior due to the lower concentration of corrosion by-products deriving from the diffusion control exerted by the PHB coating films both from metal surface to the solution and vice versa. These findings provide more reference value for the selection of such system as tunable bioresorbable prosthetic materials
Keywords: 
;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

270

Views

252

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated