Preprint
Review

Segmentation and Classification of Beatboxing Acoustic Voice Tract Variations in MRI through Image Processing Technique

This version is not peer-reviewed.

Submitted:

05 May 2021

Posted:

07 May 2021

You are already at the latest version

Abstract
Human beatboxing is a vocal art making use of speech organs to produce vocal drum sounds and imitate musical instruments. Beatbox sound classification is a current challenge that can be used for automatic database annotation and music-information retrieval. In this study, a large-vocabulary humanbeatbox sound recognition system was developed with an adaptation of Kaldi toolbox, a widely-used tool for automatic speech recognition. The corpus consisted of eighty boxemes, which were recorded repeatedly by two beatboxers. The sounds were annotated and transcribed to the system by means of a beatbox specific morphographic writing system (Vocal Grammatics). The image processing techniques plays vital role on image Acquisition, image pre-processing, Clustering, Segmentation and Classification techniques with different kind of images such as Fruits, Medical, Vehicle and Digital text images etc. In this study the various images to remove unwanted noise and performs enhancement techniques such as contrast limited adaptive histogram equalization, Laplacian and Harr filtering, unsharp masking, sharpening, high boost filtering and color models then the Clustering algorithms are useful for data logically and extract pattern analysis, grouping, decision-making, and machine-learning techniques and Segment the regions using binary, K-means and OTSU segmentation algorithm. It Classifying the images with the help of SVM and K-Nearest Neighbour(KNN) Classifier to produce good results for those images.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

413

Views

345

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated