Preprint
Article

Intrinsic Dynamic and Static Nature of Halogen Bonding in Neutral Polybromine Clusters with the Structural Feature, Elucidated by QTAIM Dual Functional Analysis and MO Calculations

This version is not peer-reviewed.

Submitted:

28 April 2021

Posted:

29 April 2021

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
The intrinsic dynamic and static nature of the non-covalent Br-*-Br interactions in the neutral polybromine clusters is elucidated for Br4–Br12, applying QTAIM dual functional analysis (QTAIM-DFA). The asterisk (*) emphasizes the existence of the bond critical point (BCP) on the interaction in question. Data from the fully optimized structures correspond to the static nature of interactions. The intrinsic dynamic nature is originated from those of the perturbed structures generated using the coordinates derived from the compliance constants for the interactions and the fully optimized structures. The non-covalent Br-*-Br interactions in the L-shaped clusters of the Cs symmetry are predicted to have the typical hydrogen bond nature without covalency, although the first ones in the sequences have the vdW nature. The L-shaped clusters are stabilized by the n(Br)->σ*(Br–Br) interactions. The compliance constants for the corresponding non-covalent interactions are strongly correlated to the E(2) values based on NBO. Indeed, the MO energies seem not contribute to stabilize Br4 (C2h) and Br4 (D2d), but the core potentials stabilize them, relative to the case of 2Br2, maybe due to the reduced nuclear-electron distances in the average for the dimmers.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

177

Views

242

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated