Kandeva, M.; Kalitchin, Z.; Stoyanova, Y. Influence of Chromium Concentration on the Abrasive Wear of Ni-Cr-B-Si Coatings Applied by Supersonic Flame Jet (HVOF). Metals2021, 11, 915.
Kandeva, M.; Kalitchin, Z.; Stoyanova, Y. Influence of Chromium Concentration on the Abrasive Wear of Ni-Cr-B-Si Coatings Applied by Supersonic Flame Jet (HVOF). Metals 2021, 11, 915.
Kandeva, M.; Kalitchin, Z.; Stoyanova, Y. Influence of Chromium Concentration on the Abrasive Wear of Ni-Cr-B-Si Coatings Applied by Supersonic Flame Jet (HVOF). Metals2021, 11, 915.
Kandeva, M.; Kalitchin, Z.; Stoyanova, Y. Influence of Chromium Concentration on the Abrasive Wear of Ni-Cr-B-Si Coatings Applied by Supersonic Flame Jet (HVOF). Metals 2021, 11, 915.
Abstract
This research work studies the characteristics of wear and wear resistance of composite powder coatings, deposited by high-velocity oxygen fuel, which contain composite mixtures Ni-Cr-B-Si having different chromium concentrations – 9.9%; 13.2%; 14%; 16% and 20% , at one and the same size of the particles and the same content of the remaining elements. The coating of 20% Cr does not contain B and Si. Out of each powder, composite coatings have been prepared without any preliminary thermal treatment of the substrate and with preliminary thermal treatment of the substrate up to 650оС. The coatings have been tested under identical conditions of dry friction over a surface of solid firmly attached abrasive particles using the tribological testing device „Pin-on-disk“. Results have been obtained and the dependences of the hardness, mass wear, intensity of the wearing process, absolute and relative wear resistance on the Cr concentration under identical conditions of friction. It has been found out that for all the coatings the preliminary thermal treatment of the substrate leads to a decrease in the wear intensity. Upon increasing Cr concentration the wear intensity diminishes and it reaches minimal values at 16% Cr. In the case of coatings having 20% Cr concentration, the wear intensity is increased, which is due to the absence of the components B and Si in the composite mixture, whereupon no inter-metallic structures are formed having high hardness and wear resistance. The obtained results have no analogues in the current literature and they have not been published by the authors.
Keywords
high-velocity oxygen fuel; chromium; abrasion
Subject
MATERIALS SCIENCE, Biomaterials
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.