Preprint
Article

This version is not peer-reviewed.

Enriching Elementary School Mathematical Learning with the Steepest Descent Algorithm

A peer-reviewed article of this preprint also exists.

Submitted:

18 April 2021

Posted:

20 April 2021

You are already at the latest version

Abstract
The Steepest Descent (or Ascent) algorithm is one of the most widely used algorithms in Science, Technology, Engineering, and Mathematics (STEM). However, this powerful mathematical tool is neither taught nor even mentioned in K12 education. We study whether it is feasible for elementary school students to learn this algorithm, while also aligning with the standard school curriculum. We also look at whether it can be used to create enriching activities connected to children’s real-life experiences, thus enhancing the integration of STEM and fostering Computational Thinking. To address these questions, we conducted an empirical study in two phases. In the first phase, we tested the feasibility with teachers. In a face-to-face professional development work-shop with 457 mathematics teachers actively participating using an online platform, we found that after a 10-minute introduction they could successfully apply the algorithm and use it in a couple of models. They were also able to complete two complex and novel tasks: selecting models and adjusting the parameters of a model that uses the steepest descent algorithm. In a second phase, we tested the feasibility with 90 fourth graders from 3 low Socioeconomic Status (SES) schools. Using the same introduction and posing the same questions, we found that they were able to understand the algorithm and successfully complete the tasks on the online platform. Additionally, we found that close to 75% of the students completed the two complex modeling tasks and performed similarly to the teachers.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated