In light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programs will identify hundreds of novel viruses that might someday pose a threat to humans. Our capacity to identify which viruses are capable of zoonotic emergence depends on the existence of a technology—a machine learning model or other informatic system—that leverages available data on known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions: What are the prerequisites, in terms of open data, equity, and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it, and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges?
Keywords
zoonotic risk; viral emergence; viral ecology; genomics; machine learning; access and benefit sharing; intellectual property law; global health
Subject
LIFE SCIENCES, Biochemistry
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.